Statistics

Types of Data (CONIR)

- Categorical: groups
 - Binary (eg. male/female) Mode
 - Nominal (eg. A, B, AB, O blood types)
- Ordinal: no fixed interval
 - o Ordinal data (eg. APGAR scores, ASA scores)
- Numerical: Mean, median, range, (mode), SD/variance
 - Interval: fixed interval, cannot multiply, no fixed 0, can add (eg. temp in Celsius)
 - Ratio: fixed interval, meaningful distribution, can multiply and add (eg. temp in kelvin)

Median, mode, range

- Parametric
 - o Continuous
 - o Numerical
 - $\circ \quad \text{Normal distribution} \quad$
- Non-parametric

Measures of Central Tendency

- Categorical:
 - Mode: the value that occurs most frequently
- Ordinal:
 - \circ Median: middle of a series of observations; summary of choice in non-parametric data
 - Mode
- Numerical:
 - Mean: (sum of observations)/(number of observations)
 - o Median
 - o Mode

Measures of Variability

- Categorical:
 - o None
- Ordinal:
 - Range: smallest and largest values in a sample
 - Interquartile range
 - Numerical:
 - o Standard deviation, variance
 - o Range
 - o Interquartile range

Standard Deviation

- Measure of the average spread of individual samples around the sample or population mean
- +/- 1 SD = 68.3%
- +/-1.96 SD = 95%
- SD = $\sqrt{(variance)}$
- Variance = $\varepsilon(x-\dot{x})^2/(n-1)$
 - \circ x-x is the difference between each value and the sample mean
 - o n-1 is the degrees of freedom

Standard Error of the Mean

- An estimate of the spread of sample means around the population mean
- SE = SD/ \sqrt{n}
- SE is used to calculate **confidence intervals**.
 - Confidence interval is the range around a sample mean with which the mean of the sample's population lies
- This is an indication of the precision of the sample mean as an estimate of the population mean

Confidence Intervals

• The range around a sample mean with which the mean of the sample's population lies

- Indication of precision of the sample mean as an estimate of the population mean
- 95% CI:
 - \circ The range of values in which the true population parameter will fall into, 95% of the time.
 - \circ $\,$ A large range of values is less significant and relevant than a small range of values
 - Gives <u>clinical significance</u> (not just statistical significance)
- CI = mean +/- SE x 1.96
- How this compares to the P-value:
 - P value is the probability of incorrectly rejecting the null hypothesis (false positive)
 - \circ If P = 0.05, there is a 1 in 20 chance of this occurring.
 - It only indicates a statistical significance, <u>not</u> a clinical significance.

Parametric Testing

- Based on the parameters of the normal distribution
 - Values cluster around the norm with fewer and fewer values towards the tails
 - \circ $\,$ Can be completely described by its mean and SD $\,$
 - $\circ \quad \text{Equal spread} \quad$
 - Bell shaped curve, symmetrical

Null Hypothesis

- A standpoint adopted in statistical analysis that any apparent difference or effect is simply a random variation of no difference or effect.
- Hypothesis test is carried out to determine the likelihood of the null hypothesis being correct.

P-Value

- The probability that the observed difference occurred by chance (random variation) alone
- It gives the likelihood of the null hypothesis being correct
- This is the acceptable false positive rate.

<u>α Value/Type I Error</u>

- False positives
- Set by investigators during the design phase.
- It is the limit at which the P value is deemed too large for a difference to be regarded as statistically significant.
- Arbitrarily 0.05.
- This needs to be lower than the β value; the ramifications of rejecting the null hypothesis and saying that there is a difference, and potentially changing treatment/management erroneously is worse.

<u>β Value/Type II Error</u>

- This is the *false negative rate*
- That is, saying there is not a difference when there is one.
- Usually set at 20%
- Decrease sample size, increase type II error.

Power

- The chance of a test successfully demonstrating the true negative result • The ability to detect a difference if there is one
 - Power = $1 \text{false negative rate} = 1 \beta$ error
 - Hence there is an 80% probability of detecting a difference if it exists
- Determinants of power:
 - Sample size
 - o Magnitude of effect: smaller difference, larger sample size
 - \circ β value: usually 0.2 (if lower, need larger sample size)
 - \circ α value: usually 0.05 (if lower, need larger sample size)
 - Sample variability (if increased, need bigger sample)
 - o Number of measured outcomes: sample size might be different for each
 - Sensitivity of the test used
 - o Drop out rate

Parametric Tests

•

- Continuous numerical data
- Assumes a normal distribution
 - Normal test (z test):
 - \circ n > 100
 - One sample: sample vs population
 - Two samples: sample A vs sample B
- Students' T test:
 - \circ n < 100
 - One sample
 - Two sample unpaired
 Two sample paired (between the sample paired)
 - Two sample paired (before and after intervention)
 - Less intrinsic variability
 - More powerful
 - False negative less likely
- ANOVA (Analysis of Variance)
 - \circ n > 100
 - Determines if there is a difference between **3** or more samples by comparing variability
- T-test with Bonferroni's correction:
 - Correction factor allowing a t-test to be used to make comparisons between 3 or more samples

 $\begin{tabular}{|c|c|c|c|c|c|} \hline $1-2$ samples & ≥ 3 samples \\ \hline $n > 100$ Normal test & ANOVA \\ \hline $n < 100$ T test & T test with \\ $Bonferroni's \\ $correction$ & correction \\ \hline $n < 100$ & $1-2$ samples \\ \hline $n > 100$ & $1-2$ samples \\ \hline $n >$

Non-Parametric Tests

• Used when:

•

- $\circ \quad \text{Non-normal distribution} \\$
- Ordinal or discrete data
- Small sample
- Compared with parametric tests:
 - Only derive median and range (not mean and standard deviation)
 - Less powerful
 - More type II error
- Wilcoxon Rank Sum
 - o Non-parametric equivalent to the unpaired T test
- Mann-Whitney U
 - Non-parametric equivalent to the unpaired T test
- Wilcoxon Paired-Sample Test
 - Non-parametric equivalent to the paired T test
- Kruskal Wallis:
 - o Non-parametric equivalent to one-way ANOVA

Categorical Data: Chi-Square

- A test to assess whether there is a real difference between the frequency of a categorical event between 2 or more groups
- Involves a contingency table; compare the observed frequencies with those expected if there is no difference between groups
- Gives a risk analysis
- Relative risk:

	Disease	No Disease
Exposure	а	b
No Exposure	с	d

- Ratio of incidence of disease in exposed vs. unexposed
- $\circ \quad \frac{\text{Incidence amongst exposed}}{\text{Incidence amongst unexposed}} = \frac{a(a+b)}{c(c+d)}$
- o True risk
- o Reported with confidence intervals
- Seen with cohort studies (ie. Prospective data)
- Odds ratio:
 - ratio: Odds of the disease in exposed vs yn ewnord

0	Odds of the disease in exposed vs unexposed			
0	Odds of disease in exposed	=	<u>a/b</u>	= <u>ad</u>
	Odds of disease in unexposed		c/d	bc

- Not an exact risk
- Tends to **overestimate** the risk
- OR and RR are similar if **rare** outcomes
- Used in <u>retrospective</u> case control studies (no information on numbers of all exposed or unexposed
- NNT:
 - \circ Number of patients needed to be treated in order to avoid one event
 - \circ NNT = 1/ARR; where ARR = absolute risk reduction
 - ARR = incidence in exposed incidence in unexposed
 - \circ RRR = 1 relative risk

	Disease +	Disease –
Test +	а	b
Test –	с	d

Predictive Ability of Tests

- Sensitivity:
 - The ability of a test to correctly detect the disease
 - True positive rate
 - \circ a/(a+c)
 - True positive/Disease
- Specificity:
 - The ability of a test to correctly identify those without a disease
 - True negative rate
 - \circ d/(b+d)
 - o True negative/No disease
 - Positive predictive value:
 - The likelihood of having the disease if a positive result
 - \circ a/(a+b)
 - True positive/All positive
- Negative predictive value:
 - The likelihood of not having the disease with a negative result
 - \circ d/(c+d)
 - True negative/All negative
- Likelihood ratio:
 - Likelihood of having a positive result when you have the disease compared with the likelihood of having a positive result when you don't have the disease
 - Sensitivity/(1-specificity)
 - 0
- Sensitivity and specificity:
 - Important in screening tests
 - Not affected by prevalence
- PPV and NPV
 - Take into account the prevalence (prior probability)
 - o If a disease is common, a positive result is like to represent a true positive
- Screening tests:
 - High sensitivity (of picking up the disease)
 - High negative predictive value (because prevalence of disease in a large population is low)
- Diagnostic tests:
 - High specificity
 - High positive predictive value

<u>Error</u>

- Random error: error introduced by lack of precision in a study
- Bias: systematic error, not reduced by increasing the sample size
- Types of bias:
 - o Selection
 - One group of patients has a different risk to another group
 - Reduced by *randomisation*
 - \circ Detection/observer
 - Observer's assessment is influenced by knowing the treatment allocation
 - Reduced by observer blinding
 - o Recall
 - Patient's recall of symptoms is influenced by knowing the treatment allocation
 - Reduced by *patient blinding*
 - o Response
 - Patient's physical response is affected by knowing the treatment allocation
 - Reduced by *patient blinding*
 - o Publication
 - Positive studies are more likely to be published than negative studies
 - Reduced by registration of the trial prior to starting
 - Performance
 - Knowledge of the treatment allocation favours additional interventions or withdrawal
 - Reduced by *allocation concealment* and *observer blinding*
 - o Hawthorne effect
 - Being studied makes patients feel better
 - Reduced by *using a control group*.

Critical Appraisal of a Published Article

- Question worth asking?
 - Has it been answered before
- Ethical approval
 - Helsinki declaration:
 - Scientific principles (accepted principles, proper training)
 - Protocols
 - Patients: voluntary, privacy, informed consent, entitled to results
 - Publication: accessibility, conflicts of interest, published regardless of outcome
 - Placebo
 - Adequate risk/benefit assessment
 - Issues in ethical review:
 - Will the trial add knowledge
 - Methodological validity
 - Respect for participants
 - Voluntary informed consent
 - Respect for privacy and confidentiality
 - Potential harm minimised
- Methodology

0

- Trial design (RCT, cohort etc...)
- Participants and selection
- o Sample size
- Outcome measures:
 - Protocols; were they changed at all
 - Surrogate outcomes?
- Study design
 - Randomisation
 - Reduction of bias
- Analysis
 - Appropriate?
- Conclusions
 - o Justified
 - o Spin?
- Applicability and validity
- Conflicts of interest
- Well written

Systematic Review

- Systematic review: addresses a specific clinical question by systematic evaluation of all appropriate trials
- Meta-analysis: the mathematical process of combining all the data from trials from the systematic review
- Protocol:
 - Specific clinical question
 - Inclusion and exclusion criteria
 - Search methods
 - o Outcomes
 - o Validation of studies
 - Assessment of heterogeneity (diversity amongst study results greater than chance alone):
 - Clinical: different patient groups
 - Methodological: difference in conduction and methods between trials
 - Statistical: consequence of the above two. Significant difference between results
 - Meta-analysis
 - o Reliability of results
 - \circ Conclusions
- Requirements:
 - Similar patient groups (theterogeneity)
 - Similar interventions
 - Measurement of similar end-points
- Advantages:
 - ↑sample size and power: better chance of detecting a difference
 - o Summarises and collates large amount of data
 - More cost effective and time efficient than commencing new trials
 - o Reduces delay between research discoveries and starting new treatments
 - o Limits bias, improves reliability
- Pitfalls:
 - o Publication bias: negative studies are less like to be submitted/accepted/published
 - o Duplicate publication: double counting in meta-analysis
 - Heterogeneity
 - o Historical/outdated studies
 - Subject to limitations in original study design
 - Results mostly influenced by the results of large trials

<u>Planning a Clinical Trial</u>

- Define the aim:
 - Clinical question
- Perform literature search:
 - o Has the question already been answered
- Protocol:
 - o Aim
 - o Background
 - o Design: blinded, prospective/retrospective, crossover, randomisation, control group
 - o Inclusion and exclusion criteria
 - \circ Sample size calculation: power (β), α value, size of difference to be detected, patient variability, estimated drop out rate
 - Treatment: dose, placebo
 - o Outcomes and data collection
 - Statistical analysis, methods
 - Safety monitoring
 - o Patient information and informed consent
- Ethics approval
- Pilot study
- Modify protocol
- Main study