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INTRODUCTION 
 
When the first plane flew into the twin towers, the initial response was that a terrible accident had occurred. 
When the second plane flew in, people immediately realised that this was not an accident but a deliberate act. No 
statistical analysis was required to reach this conclusion; it was an intuitive process which we experience day in 
day out. Goldfinger knew this too:  
 

“They have a saying in Chicago, Once is happenstance. Twice is coincidence. Three times is enemy action”. 
 
What does formal statistical analysis tell us about an event in a trial? Usually it comes down to one thing: it 
formalises the above thought process and produces a Probability that the event could have happened by chance. 
It will never allow us to absolutely prove that an effect was more than a chance event. We should always leave 
the clichéd hyperbole of ‘clinically proven’ to alternative medicine and advertising agencies.  
 

Statistics is never having to say you’re certain 
 
Statisticians have designed tests that at first appear abstract, but in fact are based on common sense and intuition. 
For example, if we were asked if there is any difference in skin colour between African Americans, Scotsmen 
and Chinese we subconsciously perform ANOVA and would say ‘yes’. This is because the overall differences in 
skin colour (the between groups variance) far outweighs the confusion caused by the pallid Michael Jackson and 
the bronzed Rod Stewart and Bruce Lee (the within groups variance).  
What if you see a strange person outside your house twice in one week? The question arises, is this a co-
incidence or are they …a stalker! You will be subconsciously comparing the current proportion of two weirdo 
sightings per seven days against the normal proportion of zero sightings per seven days.  How frequent does the 
new event need to be before you believe it to be more than coincidence?  This is the thought process behind the 
Chi-square test.  
Most other tests also have an intuitive basis – look for it and you’ll understand statistical methods better.   
 
 
 

AJM May 2008 
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 TYPES OF DATA 
 
 
Two main groups of data: 
 
 
Categorical (qualitative )   
 Each individual patient can only belong to one of a number of 

distinct categories.  
 
Binary Two categories: male /female; alive/dead 
 
Nominal data:   The categories have names and there is no order. Eg blue, brown, 

green and grey eyes; blood types: O,A,B,AB. 
 
Ordinal data:   There is an order to the categories eg cancer staging; severity of 

pain, ASA scores, APGAR scores,  
  
 Discrete numerical data: Where the variable can only take certain 

whole number values. eg pain score from 0-10. This data may be 
analysed as ‘continuous’ if the sample is large enough. Note: Age is 
a continuous numerical variable but is often treated as discrete and 
may also be counted into age range groups and handled as 
categorical.   

 

Continuous numerical (quantitative)  
 The variable has a numerical value 
 
 Parametric and non parametric data:  
 Parametric data is continuous numerical data from a normal 

distributed ‘population’.  
 Non-parametric data is all the rest but usually refers to continuous 

numerical data from a severely non-normal distribution or when the 
sample is too small to be sure what the parent distribution was like.  
(Large numbers of Ordinal data are often treated as continuous 
numerical data and are usually handled with non-parametric tests).  

 
 Interval data and ratio data:  A largely irrelevant sub-classification 

of statistical data. Interval data increase at constant intervals but do 
not start at a true zero. eg gauge pressure or temperature on the 
Celsius scale (20 °C is not twice as hot as 10 °C). Ratio data is a 
type of interval data in which there is a true zero; eg absolute 
temperature or absolute pressure (Absolute pressure of 200 kPa is 
twice as great as 100 kPa) 
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DESCRIPTIVE STATISTICS 
 
 
What is descriptive statistics? Describing the data from a sample. This usually consists of a 

summary measure accompanied by a measure of the spread of data 
in the sample. A summary measure with a narrow spread of data is 
indicative of a real trend in the sample. If there is a wide spread of 
data one can’t be sure that the summary measure represents a real 
trend.  Graphical displays are also part of descriptive statistics. 

Summarizing data  
 
Arithmetic mean Often referred to as simply the mean. The sum of observations 

divided by the number of observations. Has most relevance if the 
data are symmetrical.  

 
Median Middle of a series of observations. If there is an even number of 

observations, the median is the average of the two middle 
observations.  The median is the same as the mean if the data are 
symmetrical but will be different if the data are skewed. The median 
is the summary of choice in non-parametric data 

 
Mode The value that occurs most frequently. The same as the median and 

mean if the data are symmetrical. 
 
Geometric mean If data are skewed to the right, plotting the log of x against the 

frequency produces a much more symmetrical distribution.  The 
arithmetic mean of the log values can then be calculated . The anti-
log of this mean is termed the geometric mean and will be closer to 
the median than the mean of the raw data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 

Distribution skewed to the right 
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Measures of variability 
 
Measures of variability describe the average dispersion of data around a mean. The most commonly used 
measures of variability are the range, percentiles, standard deviation and the standard error of the mean.  

Range  
 The smallest and largest values in a sample. May be used in 

reporting skewed and other non-parametric data along with the 
median Problem is that the range is too influenced by outliers so 
the inter-quartile range(see below) is preferred.  

Percentiles  
 Definitions vary. The simplest is that they are a method of ranking 

by dividing the scores or results into 100 parts. Thus, if your score 
was on the 65th percentile, 65% of scores lie below you. The 
interquartile range is the range around the median within which 
50% of the scores lie. It has the advantage of not being influenced 
by outliers. Another commonly used range which is sometimes 
referred to as the ‘normal’ range, is the 95% central range. This 
excludes the outer 2.5% of observations.  

 

 
 

Box and whisker plot.  Plots the median, 25th and 75th percentiles and the maximum and minimum values. The 
95% central range may also appear in the B and W plots.  
 

Standard deviation (SD, s or σσσσ)  
 A measure of the average spread of individual values around the 

sample or population mean. The symbol s is use for the SD of the 
sample data and σ is used for population data.  

 
Calculation of SD To calculate the SD from a sample you square the differences 

between each value and the sample mean, sum them (sum of 
squares) and divide this by (n-1) to give the variance. The SD is 
the square root of the variance.  
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Degrees of freedom The term (n-1) is called the degrees of freedom (d.f). It is the 

number of totally independent observations that are possible in a 
sample where the mean is known. It is one less than the sample 
number because, if n-1 observations are totalled, the last one can 
be deduced.  

 An intuitive explanation for degrees of freedom is hard to find in 
the texts. It is, however, enough to know that using (n-1) gives a 
better estimate of the population variance from sample data.  

 
When is the standard deviation used ? i) When reporting sample data, the SD gives an indication at a 

glance as to whether the sample mean represents a real trend in the 
sample.  

 
 ii) The SD of a large, randomly selected sample can be assumed to 

be close to that of the population from which it was drawn. 
  
 iii) The SD is used to calculate the SE 
 
 iv) Any individual data point in a normal distribution can be 

described as a multiple of SD’s from the population mean. This is 
called z transformation. This has less importance than z 
transformation of means.  

 
 v) Standardised difference. This is an effect size expressed in 

multiples of the standard deviation. It is used in sample size 
calculations. See later. 

 

Standard error of the mean (SE)  
 An estimation of the spread of sample means around the 

population mean. If you were to take multiple samples from a 
normally distributed population and plot the sample means you 
would end up with a normally distributed plot of sample means. 
(See Figure page 9) The SE is an estimate of the spread of sample 
means in this theoretical distribution. But, you do not need to take 
multiple samples and plot their means to estimate the SE. It is 
‘guess-timated’ from the data in a single sample.  

 
Calculation of the SE The SE is an estimate based on the number in the sample and the 

sample SD.   
 

 
n

SD
SE=       

 
 Intuitively, this makes sense because the variability among sample 

means will be increased if there is a) a wide variability of 
individual data and b) small samples. 

  
Why do we need the SE? i) An indication of the precision of the sample mean as an estimate 

of the population mean (See Page 10 for further explanation) 
 
 ii) The SE is used in parametric tests to quantify the magnitude of 

an effect size. The effect size is expressed as multiples of the SE. 
This is called z-transformation. ( See below) 

  
 iii) The SE is used to calculate confidence intervals (See below) 
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 DISTRIBUTIONS 
 
 
An empirical frequency distribution is one in which the observed data are plotted against their frequency. 
Theoretical distributions are those which are described by a mathematical model and are used to analyse data.  
        

The Normal Distribution  
 
 
 

 
Features of a normal distribution 
 
1. An observation that is normally distributed within a population has a norm and random independent factors 

have caused variation on that norm. Most values cluster around the norm with fewer and fewer values towards 
the tails. Extreme values do exist though. 

 
2. It can be completely described by its mean and SD. 
 
3. Because the variation is random, there is equal spread of values above and below the norm. The average value 

(mean) is the same as the central value (median) and the most common value (mode).  
 
4. A normal distribution (Gaussian) curve can be plotted to illustrate the frequency of observations within the 

population or the probability of an observation arising in the population. The curve is bell shaped, 
symmetrical and theoretically of infinite size with tails that never reach the x axis.  

 
5. A large (n > 100) randomly selected sample from a normally distributed population would also have near 

normal distribution.  
 
6. The mean and standard deviation of such a sample is likely to be close to the mean and standard deviation of 

the population from which it was sampled.  
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Figure 1. The normal distribution curve 
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7. The smaller the sample the less likely it will have ‘normal’ geometry and the less likely that the mean and 
standard deviation will match those of the population. 

 
8. If multiple large samples were to be randomly selected from a normally distributed population the plot of the 

sample means would also have normal distribution.  

 
 
Precision and the standard error Suppose you repeated the above exercise with huge samples 

of, say, 1000 patients each. Clearly, in this situation, the 
sample means would be close estimations of the population 
mean and so a plot of the means of multiple samples would 
have a very tight distribution. The SE of this distribution would 
thus be small. 

 Now suppose you repeated the exercise with small samples of 
10 patients each. In this situation the sample means may not be 
close estimations of the population mean and the plot of 
multiple sample means would be much more spread-out. The 
SE of this distribution would be large. Thus, the SE is an 
indication of the precision of a sample mean as an estimation 
of the population mean.  

 
Is my sample from a normal distribution ? - Plot the data and superimpose a normal distribution with the 

same mean and SD. ‘Eye-ball’ the fit. 
 - Normal Plot. This is a plot of the ordered sample values 

against what you would expect from a Normal distribution of 
the same size. Eye-ball the fit – it should be a straight line. 
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samples illustrated.  

Figure 2. The theoretical distribution of sample means 
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 - Goodness of fit calculation. Computer algorithm will give 
you the likelihood that your data is normally distributed. Not 
thought to be superior to the subjective methods above.   

  
 

The Standard Normal Distribution 
 
z transformation z transformation is where the difference between an observation and 

its population mean, or a sample mean and its population mean is 
converted to a multiple of, respectively, SD’s or SE’s. The resulting 
multiples are called z points, z values or standard normal deviates. 

 

 
SE

x
zor

SD

x
z i µµ −=

−
=  

 
Standard normal distribution / z distribution 
 If the data of any normal distribution were to be converted to z 

values, a standard curve with fixed, known proportions arises. This 
is called the standard normal distribution curve (SNDC). By simple 
arithmetic, you will see that the SNDC always has a mean of zero 
and a SD of one.  

 The SNDC is a theoretical distribution of infinite size and the area 
under the curve (AUC) contains all possible chance variations of the 
population mean. The probability of any variable occurring within 
the total AUC is, therefore, 1. In fact, because the probability 
densities of all the proportions of the SND are known, it can be used 
to determine the probability of any z value occurring through a 
chance variation of the population mean . (Fig 5 and 6). 

 Example: if your analysis results in a z value of 1.96 and look this 
up in z tables, you will find that 0.025 will appear against this z 
value. This means that the proportion of the SNDC with z values 
greater than 1.96 is 2.5%. This is the fundamental principle behind 
parametric testing.       

   
Percentage points z values are also referred to as percentage points of the SND.  The 

most important are the 5 % percentage points ( z 0.05 ) which are ± 
1.96. These values exactly encompass 95% of the SND.  

 
SND and sample means The plot of the means of an infinite number of samples is also 

normally distributed and has SND geometry when the means are 
expressed as z values. Here, however, z values are multiples of 
standard errors from the population mean.  Thus the SND can be 
used to describe the probability of any sample mean arising as a 
random variation of the population mean. It is much more common 
for us to be using this sort of z value, as medical research is usually 
interested in comparing sample means rather than individual values. 
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Figure 3 The Standard Normal 
Distribution Curve as applied to 
individual values .  
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68.3% of all sample means 
lie within ± 1 SE from µ 

Figure 4. The Standard Normal 
Distribution as applied to the 
theoretical distribution of sample 
means  
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The t-distribution  
 Derived by W.S Gossett under the pseudonym Student. Probability 

density distribution for parametric data but for samples that are too 
small to use in the z distribution. For the latter you require large 
samples with near normal geometry. The t-distribution is 
consulted according to the degrees of freedom (n-1) of your 
sample. As the sample size gets bigger you will find that the 
parameters of the t-distribution become closer to those of the 
SND. (See later under t-test) 

The Chi-squared distribution 
 The chi-squared distribution is derived from the normal 

distribution (and therefore continuous numerical data) and 
describes the distribution of the variance of samples taken from 
the ND. The shape of the distribution depends on the degrees of 
freedom. As the degrees of freedom become greater the 
distribution becomes more Normalised. 

 
Skewed distributions and data transformations :  
 
 If a variable has a distribution that is skewed to the right 

(positively skewed), the data may be transformed so that the 
distribution becomes more ‘Normal’, thus allowing parametric 
tests to be used.  The transformation of choice here is to plot 
frequency against the log of x. Parametric tests are made on the 
transformed data and conclusions made. (Eg the mean log of X is 
significantly different from the mean log Y). Summary measures 
are often back-transformed (antilog), for example to produce the 
geometric mean.  

Binomial distribution  
 Describes the probability of different proportions of a binary 

outcome arising in a fixed number of observations.  
 
Example A binomial distribution might be used to display the probabilities 

of different proportions of heads arising during sets of coin tosses 
or the chances of turning up a disease of known incidence in a 
sample of specified size.   
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Population proportion The most likely proportion (the norm) in the population is called 

the population proportion (π). In the above example it would be 
0.5 (50 % heads). In another example one third of people have 
blue eyes, so π = 0.33. 

 
 Sample size As the sample size gets bigger, it becomes more likely that the 

proportion of a particular observation within the sample will be 
the same or similar to that of the population proportion (π). Thus, 
if you were to toss a coin only four times you would have a good 
chance of turning up a proportion of heads far removed from 0.5. 
If you were to toss a coin 1,000 times it is likely that the resulting 
proportion of heads would be very close to 0.5. 

 
Distribution shape The larger the sample, the closer the binomial distribution is to a 

normal distribution. This is the case, even if π is not 0.5. See 
below. This fits in with the statements above in that, with large 
samples, finding results far from the norm is rare.   

  
 

 
 
Figure 7. Examples of the way the binomial distribution changes with  sample size. (Reproduced from Kirkwood 
BR, The essentials of medical statistics, Blackwood Scientific Publications 1988) 
 
 
Total probability Total of all outcomes must be 1.0 
 
The binomial formula  The probability of a specific proportion arising in a sample is not 

eye-balled from the above graphs but calculated using the 
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binomial formula. The input into this formula is the proportion 
you are seeking, the population proportion and the sample number. 
(See appendix) 

 
Hypothesis tests As the binomial distribution can be approximated to a normal 

distribution, hypothesis tests such as the normal approximation 
test can be carried out to determine, for instance, the probability of 
a particular proportion or greater arising in a binomial distribution.   

 
Example of the application If vomiting is known to occur after general anaesthesia in 0.3 

cases (π = 0.3) and a study of TIVA in 100 patients results in 
vomiting in only 0.2 cases, is the difference in proportions 
significant or is 0.2 simply a random variation of 0.3?     

Poisson distribution  
 Describes probability of a number of events occurring in a fixed 

time period or in a region of space. The events occur randomly 
and independent of each other at some average rate (µ) 

  The probability is calculated from an exponential formula and 
depends on prior knowledge of one parameter only, the mean 
number of occurrences per unit time period (or unit region of 
space). See appendix for formula. 

 
Example If the number of adverse incidents in theatre over a two year 

period is known, what is the probability of more than 5 incidents 
in one day? 
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HYPOTHESIS TESTING 
  
 
What is an hypothesis test? A process by which we test a specific hypothesis on a set of data. 

The result will be couched as a rejection or acceptance of the 
hypothesis. Hypothesis tests may be parametric or non-parametric. 

 

 
Null hypothesis (H0) The standpoint that that an effect found experimentally is simply a 

chance event. For example, in a comparison of the effects of Drug A 
with Drug B, the Null Hypothesis would be that there is no real 
difference between the drugs and that any difference detected is 
simply due to chance. An hypothesis test is then carried out to 
determine the likelihood of A and B being simply random variations 
of each other.  On the basis of this, the Null Hypothesis is either 
accepted or rejected.   

 
Alternative hypothesis (H1) An alternative hypothesis that holds by default if the null hypothesis 

is not true.  For example, if the Null hypothesis is that Drug A does 
not alter blood pressure, the Alternative Hypothesis will be that 
Drug A does alter blood pressure. Note that, by using the term alter 
rather than specifying raise or lower, the H1 is a two-tailed 
Alternative Hypothesis.  This is the most common situation because 
we cannot usually state beforehand that Drug A (if it had an effect) 
could only move the blood pressure in one specific direction.   

 
P value: The probability that an effect could have occurred by chance alone 

if the Null Hypothesis is true The P value is calculated from your 
study results and is the proportion of the SNDC which is more 
extreme than the z value. P is then compared with the pre-set alpha 
and the H0 accepted or rejected.  NB: It is not correct to say that the 
P value is the probability that the H0 is true. The H0 is either 
accepted or rejected. 
 

Alpha value The alpha value is the significance level and is the limit at which 
your P value will be deemed too large for a difference to be 
regarded as statistically significant. Alpha is set by the investigators 
at the study design stage. In medical research an alpha value of 0.05 
is usually selected.  

 
Comparing P with alpha Supposing you are comparing two means, A and B. At the design 

stage you have set alpha at 0.05 and your calculated P value later 
turns out to be 0.045. The latter means that, if H0 is true and 
differences between A and B are merely due to chance, the detected 
difference could occur 4.5 % of the time. Because you have set 
alpha at 0.05, you may claim the difference as statistically 
significant. and reject the null hypothesis.   The downside is that you 
have a 4.5 % chance that your statement is a false positive one.  

 

Principles of hypothesis testing  The null and alternative hypotheses are defined 
 Data is collected 
 A test statistic is calculated to test the hypothesis 
 The statistic is compared to values in a probability distribution 
 A P-value is produced which is compared with a significance 

level 
 The hypothesis is either accepted  or rejected 
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Type 1 Error (Alpha error): Frequency where we erroneously conclude there is a difference 
when there isn't one. False positive frequency. The magnitude of 
the potential alpha error is determined by the alpha value selected.  

 
Type II Error (Beta error) Frequency where we are unable to detect a difference when there is 

one. False negative frequency.  One common cause of this is using 
a sample size which is too small. (see later) 

 
Limitations of hypothesis testing   

• The selection of 0.05 as the significance level is very common, 
but is totally arbitrary and does not usually have a clinical 
basis.   

• A statistically significant difference does not necessarily imply 
a clinically significant difference.   

• The greater the alpha value, the greater the likelihood of more 
false positive error (alpha or type 1 error) 

• If a ‘significant’ result is presented as P < 0.05, rather than by 
giving the exact P value, the reader is prevented from drawing 
their own conclusions about the degree of significance. For 
example, you wouldn’t know if P had been 0.0001 (highly 
significant) or 0.047 (barely significant). 

 
 

 
 

 
 

Interpretation of P values: The continuum between 
significance and non-significance 

P value 
 

1.00 
 

↑↑↑↑ 
 

0.02 
↑↑↑↑ 

0.06 
0.04 
0.01 

↑↑↑↑ 
 

0.001 
↑↑↑↑ 
 

0.000 
 

100% probability of the 
effect occurring by chance.  
Can’t reject H0 

0% probability of the effect 
occurring by chance.  Reject H0 Significant 

Not significant 

Convention: Arbitrary cut off. Alpha 
set at 0.05.  

Significant 

Not significant 
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PARAMETRIC TESTS  
 
 
Basis of parametric tests: Parametric tests are tests that are based on the parameters of the 

normal distribution. They determine the likelihood that a difference 
has occurred by chance variation rather than because of a real effect.  

 
What assumptions are made?  The data is continuous and numerical. (Large numbers of discrete 

data may also be treated as parametric.) 
 The samples have similar variance and are taken randomly from a 

normally distributed population.    
 
 
Normal test (z test) : One sample/Unpaired 
 
Definition A parametric test for very large samples (texts vary as to the 

minimum size but rarely used when n < 100) or in the unusual 
situation where we know the population variance. The One sample z 
test determines the likelihood that the mean of a large sample (x ) is 
simply a random variation of a specified number (µ).  

 
  

Basic principle A standpoint is adopted that (µ) is the mean of a normal distribution 
and my sample is part of this distribution. Any numerical difference 
between x and µ has, thus, simply occurred by random variation.   
If this is true, the SD of the large sample will be the same as that of 
the proposed ‘parent’ distribution. The sample SD can thus be used 
to calculate the SE of this proposed parent distribution and to 
convert x to a z value on it. Z tables are then consulted to 
determine the probability of finding a value more extreme thanx in 
this distribution.  

Step by step example 
 

Question The average height of normal UK 4 yr old boys is 102 cm. (µ = 102 
cm) Does the height of a sample of 100 immigrant 4 yr olds differ 
from this number? 

 
Results n = 100,   sample mean (x ) =  99,  SD of sample = 9.8   
 
Null hypothesis There is no real difference between the mean of 102 and the height 

of immigrant boys. In other words, 99 is just a random variation of 
102.    

 
Alternative hypothesis The average height of UK and immigrant 4 yr olds is different. 

(This has to be a two tailed H1 as we have no reason to suppose 
beforehand that the test results could only vary in one direction 
from 102 cm) 

 
First assumption  Assume that 102 is the mean of a normal distribution of heights 

(Distribution A) and that our sample is part of that distribution.   
 
Second assumption (a) Assume that, as the sample is large, the SD of the sample is 

approximately the same as that of Distribution A. The SD turned 
out to be 9.8cm. 

 
 (b) From the data in your sample, you can estimate the SE of the 

theoretical distribution that would occur if you took multiple 
sample means from Distribution A. 
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 98.0
100

8.9 ==SE   

 
 Thus, the Null Hypothesis is proposing our sample mean (99) 

belongs to a theoretical distribution of sample means with mean 
102 and SE 0.98.  

 
Z transformation  The difference between 99 (x ) and 102 is then estimated in terms 

of SE’s. (See figure 5) 
 

     06.3
98.0

10299 −=−=z  

 
Consult z tables z tables are consulted to determine the proportion of the normal 

distribution that lies below a z value of -3.06.  The answer is 
0.00111.  

 As we didn’t know at the start of the study which way, if any, the 
sample mean would vary from 102, we must double the 0.00111 to 
0.00222. (See two tailed tests below) 

 
Conclusion If the Ho was true, there is a 0.2 % chance that the sample mean of 

99 could be a random variation of 102. P = 0.002 In other words 
there is a strong likelihood that the immigrant boys have a different 
height from the UK norm of 102. There is a 0.2 % chance that this 
statement is false positive. 

 If the significance level was set at 0.05, the above result would be 
regarded as highly significant.   

 
One tail vs two tailed tests As already stated, an effect will be regarded as significant if the 

probability that that an effect of that magnitude could have occurred 
through chance alone (P) was less than 5%. Thus, if you have only 
been able to state a two-sided alternative hypothesis, this probability 
is made up of the proportion in SNDC distal to your test z value plus 
the proportion that is distal to the equivalent z value in the other tail.  
This is a two–tailed test and is the usual test, given that H1 is rarely 
able to state beforehand that an effect could only occur in one 
particular direction.  

 If you know beforehand that A could only vary in one direction 
compared with B (eg A could only be greater than B), the P value is 
simply the proportion of the SNDC greater than the test z value. 
This approach is called a one-tailed test.     
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      -3    -2     -1      0      1       2     3      
Standard errors from µ 

µ = 102 

Shaded area: 0.00111 
sample means lie distal to 
a z value of 3.06 

The Standard Normal Distribution 
as applied to the theoretical 
distribution of sample means. Both 
tails illustrated. 

Z = -3.06 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Normal test (z test): Two samples  
 
Definition A parametric test to compare the means of two very large samples or 

in the unusual situation where we know the population variance.  
 
Basic principle The null hypothesis that there is no difference between the sample 

means is tested by determining the likelihood that the difference 
between the means could be found in a normal distribution around a 
mean of zero.  

 
 
Step by step example Are the post-operative morphine requirements of technique A and 

B different? 
 
Basic trial design 70 patients given technique A and 80 patients given technique B. 

Post operative morphine requirements noted for each 
 
Null hypothesis There is no difference in morphine requirements. Any numerical 

difference is due to random variation alone. 
 
Alternative hypothesis The morphine requirements of A and B are different 
 
Results Group A (n = 70); mean morphine requirement 10.6 mg, SD 1.4 
 Group B (n = 80); mean morphine requirement 11.5 mg, SD 1.3 
 Mean difference in Morphine requirement (∆ x ) = 0.9 mg 
 
First assumption  Imagine the situation in which the techniques were exactly the 

same. The difference in post-operative morphine requirement  
(∆ x ) would most likely be 0 mg or close. If that trial was repeated 
over and over and ∆ x plotted each time, a normal distribution 
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would occur around a mean of zero. Call it Distribution ∆.  The null 
hypothesis is that the mean difference between our two samples 
(0.9 mg) is part of this distribution 

 
Second assumption Because 0.9 mg is assumed to come from Distribution ∆, and the 

samples were large and randomly selected, the SD of our samples 
can be used to estimate the SE of Distribution ∆. The calculation of 
the SE for a two sample test is not as simple as before, requires a 
combining of the SD’s, and is found in the appendix. 

 
Z transformation The difference between 10.6 and 11.5 is then estimated in terms of 

SE’s by dividing the difference by the SE.  
 

 222.0=SE     054.4
222.0

9.0

222.0

5.116.10 −=−=−=z  

 
Consult z tables z tables are consulted to determine the proportion of the normal 

distribution that lies below a z value of - 4.054.  The most extreme 
z value listed is 3.29 which corresponds to a two-tailed P value of 
less than 0.001.  

 
Conclusion Statistically, this is a highly significant difference. If the Ho is true, 

there is less than 0.1% chance that it could occur by random 
variation alone.  The Ho is rejected at the 0.05 level 

 
 

Student’s t-test 
 
Definition  The t-test is a parametric test for the means of samples which are 

from a normally distributed population, but which are too small for 
the Normal test.   

 
Basic principles The calculation of the test statistic is very similar to those of the 

Normal Test although the statistic is called a t-statistic rather than a 
z-value. However, because the samples are small, we can no longer 
assume that the sample SD is the same as that of its population 
because, as noted before, the SD becomes larger as the sample size 
becomes smaller. We cannot, therefore, use the probability 
densities of the SND. Instead we take the t-statistic to t-
distributions. These have been adjusted to take sample size into 
account, becoming flatter and flatter as sample size decreases. The t 
statistic must be used with the t-distribution appropriate to the 
sample’s degrees of freedom. The t-distribution becomes nearly 
Normal when n > 60 and negligibly different when n > 100  

 
 One-sample t-test  Determines the likelihood of a sample mean being different from a 

specified number 
 

Basic calculation of t-statistic 
SE

x
t

µ−=  

 
 
Two-sample or unpaired t-test  Determines the likelihood of the means of two independent samples 

being different.  
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Basic calculation of t-statistic ( )SE ofn calculatiofor appendix  see

meansbetweendifference

21

SE

xx
t

−
=  

 
 
Paired t-test  Determines the likelihood of two sample means being different 

where the samples are the same individuals in a before-and-after an 
intervention.  
In a before-and-after intervention on the same subjects there is 
likely to be less intrinsic variability within the samples. This means 
that a small difference in means is more obvious and will have 
greater significance. (An electrical analogy is that there is a greater 
signal to noise ratio) The calculation of the paired t-statistic takes 
this into consideration and results in a more powerful test. Thus, a 
false negative result is less likely than if an unpaired test is used. 
Another instance where a paired test is indicated is when there are 
two groups of different patients but they have been matched with 
each other  

Basic calculation of t-statistic 
treatmentafterandbeforesdifference

treatmentafterandbeforesdifference

SE

x
t =  
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CONFIDENCE INTERVALS 
 
 
Definition (parametric tests) The 95% confidence interval (CI) in a parametric test is the range 

around the sample mean within which you predict with 95% 
certainty, that the true value (the population mean) lies.  

 
More general definition CI = Estimate ± a multiple of SE where multiple depends on 

assumed distribution and level of confidence 
 
How is it calculated? In the SNDC, 95 % of sample means should lie between 1.96 SE 

above and 1.96 SE below the population mean. It follows, therefore, 
that there is a 95 % probability that the population mean lies within 
± 1.96 SE of any large sample mean that has been randomly selected 
from that population. Think about those two statements carefully 
and understand why, if the first is true, the second must also be true. 
This is called the 95 % CI for the population mean.  
 

( )SEzxCI ×±= 05.0  

 
The above refers to a SNDC which has a z 0.05 of 1.96.(see 
percentage points)  If the t-test is being used, the 5 % percentage 
points vary, depending on the degrees of freedom. For example t0.05 
with 19 degrees of freedom is 2.09 and t0.05 with 9 degrees of 
freedom is 2.26. 
 

( )SEtxCI ×±= 05.0  

 
 

What are the usual causes of wide CI’s? Small samples 
 Large variance within samples 
 
What information does the CI give you?  
 
Descriptive The CI gives an indication of the precision of the sample mean as an 

estimate of the population mean. The wider the confidence interval, 
the greater the imprecision and the greater the potential difference 
between the sample mean and its population mean.  

 
Inferential Generally speaking, hypothesis tests produce a ‘reject’ or ‘accept’ 

answer devoid of any indication of statistical significance. 
Examination of the P value itself is necessary to provide this 
information. 
 
Confidence intervals allow more scope for reader judgement on 
significance.  The alternative to the hypothesis test is to examine 
whether a population mean of interest falls within the 95% CI of 
your sample. If not, it is a 95 % probability that your sample is from 
a different population. In addition, a reader may look within a CI for 
a clinically significant value of their own choosing.  Similarly, 
sample means with overlapping CI’s cannot be regarded as different, 
and graphical presentation of several means with CI’s allow instant 
visual comparisons to be made. See Forest plots and meta-analysis.  

 
Specific applications . 
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 Odds ratios. OR’s are frequently presented with confidence 
intervals. An OR of 1.0 suggests no risk associated with the 
exposure. If an OR is presented with a CI that has a range that 
includes the number 1.0, then that OR cannot be regarded as 
significant. For example an OR of 2.1 (0.6 – 3.6) could not be 
regarded as significantly different from 1.0. 

  
 Forest plots (see later) Graphical representation of the trials 

included in a metaanalysis. The results of each trial are plotted with 
their confidence intervals. Allows easy comparison of the 
significance of each trial. 

 The pooled OR in a meta-analysis is often presented as a diamond, 
the width of which is the confidence interval of the pooled OR. If 
the width encroaches on a line marked at 1.0 on the x-axis, the 
pooled OR cannot be regarded as significantly different for 1.0. 
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Figure 8. Uncertainty caused by the increase in within-groups variance in C1 

 

PARAMETRIC TESTS FOR MULTIPLE SAMPLES 
 

Analysis of variance (ANOVA) 
 
Definition Determines whether there is a difference among three or more 

samples by comparing the variability between the groups (which 
should be large if there is a difference) with the variability within 
the groups (which should be as small as possible). 

 ANOVA does not, however, tell you which of the samples is 
different.  

 
Types of ANOVA One way ANOVA:  Comparing one observation in three or more 

groups 
 Multiple ANOVA: Comparing more than one observation in three 

or more groups 
 Repeated measures ANOVA: Comparing one variable in the same 

group at different times   
 
Intuitive explanation of ANOVA 
 
Post operative morphine requirements are compared after three different anaesthetic techniques (A, B and C). 
The morphine requirements of the three samples are plotted below with their respective means.  It can be seen 
that, in each of the samples, the values cluster tightly around the mean. This implies that there is a real trend 
within each sample and, therefore, that the mean is likely to be a close representation of the true effect of each 
technique. Therefore, as the mean morphine requirement of Technique C is larger than the other two it is likely 
that Technique C has a real difference from the other two. In ANOVA terminology, the between groups 
variability is large but the within groups variability is small.  
How certain would you be though, if the results looked like those in the second figure? The means are the same 
as before, with Technique C seemingly resulting in a larger morphine requirement. However, there is no trend 
within that sample. The results are spread out and we can no longer say with any confidence that the sample 
mean represents a ‘true effect’ (ie the effect that would occur if you used technique C on the whole population) 
In ANOVA terminology, although the between groups variability is still large, the within groups variability is 
also large and a difference is not so certain. 
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Calculation The test statistic is a ratio called F. This is the ratio of the 

variances:  
 

MS groups Within 

MS groups Between=F  

 
The larger the F statistic is above 1, the more likely there is a 
difference between the groups. The F statistic is then located in 
the F distribution tables at the appropriate degrees of freedom. 
This produces a P value which is the probability that F could have 
occurred by chance if the H0 (no difference between the groups) 
was true. As before, the smaller this probability, the more likely it 
is that a real difference exists. 
 
Small print: Simplistically, the between groups mean square is the 
mean square of the difference between the individual sample 
means and the grand mean. The within groups mean square is 
obtained by summing the individual SS for each sample and 
averaging the result. 

 
Do you know which group is different? No. ANOVA tells you that one is different but not which one is 

different. Post hoc tests must be carried out to determine this. 
Examples include t-testing with Bonferroni’s correction, Scheffé, 
Neuman-Keuls, Tukey’s Honestly Significantly Difference (HSD), 
and Dunnett’s test. 

  
 

T-tests  with Bonferroni's correction   
 

Definition Correction factor which allows a t-test to be used to make 
comparisons between three or more samples. 

 
Problem Normally a t-test should only be used for one comparison eg the 

means of two samples.  
If there are three samples and you wish to determine if any one 
sample is different from the other two, you must make three separate 
comparisons. The problem is that, if alpha is 0.05, every time you 
make a comparison, you are risking up to 5 % Type I error. 
Therefore, by the time you have come to your conclusion about the 
three samples, there is potentially a 15 % risk of Type I error.  

 
Bonferroni’s correction factor To compensate for the above, instead of looking up the critical value 

for t at the α = 0.05 level, you must look up the critical value for t at 
α =  0.05 / number of planned comparisons. 

 Therefore, for three comparisons, the critical value for t would be 
looked up at α  = 0.0167 and for four patients (six separate 
comparisons) α = 0.0083.  In other words, your test value would 
have to lie in the outer 0.00415 of the t-distribution to be considered 
‘significantly’ different.  
As the number of comparisons increases it will get harder and 
harder to demonstrate a difference between the samples. This is, 
therefore, a less powerful method than ANOVA. 
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NON-PARAMETRIC TESTS  
 
 
When are non-parametric tests appropriate? Distribution of data is severely non-normal  

Ordinal or discrete quantitative data 
Small samples 
 

Characteristics of non-parametric tests Based on ranking 
Results are reported with the median and range rather than mean 
and SD 
Less powerful than parametric tests. Type II error more common 
 

Assumptions Samples are randomly selected 
 Observations are independent 

  
 

Wilcoxon rank sum test  Non-parametric equivalent to the unpaired t-test 
 
Basic principle The two samples are combined, ordered and ranked from lowest to 

highest.  The samples are then separated again and the ranks 
summed in each.  The next step is to determine whether there is a  
significant difference between the sums of the two groups. In the 
Wilcoxon rank sum test, tables list different sample sizes against 
rank sum ranges. If the smaller of your rank sums lies outside the 
relevant  range, a difference is significant.   

 
Mann - Whitney U Test   Non-parametric equivalent to the unpaired t-test 
 
Basic principle Rank all patients from smallest value to largest value and sum the 

rankings in each sample. The U statistic is then calculated to 
assess the likelihood of a difference between the rank sums. The 
equation is complicated and involves the sample size and rank 
sum. The U statistic is then located in U probability tables. 

 
Wilcoxon paired-sample test   Non-parametric equivalent to the paired t-test 
 
 
Kruskal-Wallis  Non-parametric equivalent of one-way ANOVA. Gives likelihood 

of a difference among the groups but not which one is different.  
This can be determined later using a Mann-Whitney U test  

  
Friedman's test  Equivalent of repeated-measures ANOVA.  Again based on 

ranking. 
 
Spearman’s rank order   Non-parametric equivalent of Pearson correlation coefficient 
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Figure 9. The regression of y on x 
 

ŷ    =  a    +     b . x 
 

LINEAR REGRESSION AND CORRELATION 
 

 
Purpose Used to compare the relationship between two continuous variables 

where the relationship appears to be linear. eg blood pressure and 
blood loss. 

 
Linear regression: The drawing of a line that best describes / predicts the relationship 

between two variables 
 
Correlation: The assessment of the closeness of association between two 

continuous variables.  
 

 
Linear regression     
 
Assumptions: -The relationship is linear 
 -Observations are independent of each other. Multiple observations 

from the same patient or repeated measures over time are not 
permitted. 

 -One variable must be an explanatory or  independent variable and 
the other is the response or dependent variable.  Not to be used for 
comparing two dependent values such as two measuring techniques. 

 -For each value of x there is, potentially, a Normal Distribution of 
observed values of y  

  
Process The data are fed into a computer.  Explanatory variables (from 

which observations are to be made) are plotted on the x axis and the 
dependent (outcome of interest) variables are placed on the y axis. 
The computer draws the best-fit line through the points by choosing 
a course which minimises the sum of the squared vertical distances 
between the individual points (yi) and their imaginary equivalents 
( ŷ ) on the line. This is called least squares fit and the plot of ŷ  at 

x is called the regression of y on x.  
 

                                      
The computer then calculates the equation 
which describes the line and the proposed 
relationship:  

 
 
 
 

Where: 
ŷ      predicted points on regression line 

b       slope of line; defines the proposed  
         relationship; regression coefficient 
a        Intercept of y axis when x = 0 
      

    
Values for b b > 0  Positive relationship 
 b < 0 Negative relationship 
 b = 0 A line of no slope, therefore, no relationship 
 
How precise is b? The larger the sample the closer b will be to the true effect in the 

population. The precision can be gauged by reporting b with SE and 
CI. 

Mark Finnis
Highlight

Mark Finnis
Highlight

Mark Finnis
Highlight
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                                         •         •
                      •     •      •
           •      •
      •

 

              •                      •
                  •                               •
               •                        •      •
       •                            •
                     •

 

 
Could b be a random variation of zero? The likelihood of this can be determined from the CI, which should 

not include zero, or by comparing b with 0 in a one sample t- test. 
   
Example Heights (cm) of children (independent variable) are plotted against 

their anatomical dead-space (ml) (dependent variable) to determine 
whether there is a relationship. (ref.eBMJ) Resulting regression 
equation: 

 y = -82.4 + 1.033 x 
 Thus, if height was 110 cm, the anatomical deadspace would be:  
 y = -82.4 + (1.033 x 110) = 31.2 ml 
 
What influences the variation of y? 1.If y did not vary at all with x, y would be a horizontal line at the    

 mean of y.   
2.If y varies linearly with x, there is a slope to the line. If a perfect 
fit, the variation is said to be entirely due to the regression.  
3. Random effects mean that the measured value of y may not be 
exactly on the predicted line ie there is Residual scatter  
4.Non-random effects may also influence the scatter of y about the 
line.  For example, as x increases the scatter of y might increase or 
decrease. If this is the case we need to transform data or use a 
different test.   

 
Coefficient of determination (R2) Allows us to subjectively assess the goodness of fit of the line to the 

data points by calculating the proportion of the total variation that is 
explained by the regression. For a regression line to have a good fit 
most of the variation of y will be due to 2 and little due to 3.  

 
 R2 is the ratio of the variation explained by the regression 

(regression sum of squares) to the total variability (regression SS + 
residual SS). Thus, for example, if there was a perfect fit of the line 
to the points, the residual SS would be 0 giving an R2 equal to 1.0 

.  

SSTotal

SSRegression
R2 =  

  
 In the above example R2 was 0.716. This means that 72 % of the 

variation between children, in the size of the anatomical dead-space, 
is accounted for by the height of the child. 

 
 

 
 
 
 
 
 
 
 
 
 

 
Most of the variation of y is caused by the regression line.  Lots of variation of y caused by residual scatter. 
Good fit of line to data points. R2 high   Fit of line less good. R2 smaller.  
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Pearson correlation coefficient (r)   Correlation is the assessment of how likely is the proposed linear 
relationship.  

 
Values of r 1.0 or -1.0  Perfect correlation 
 0  No association at all 
 0.2 – 0.4  Mild association 
 0.4 – 0.7  Moderate association 
 0.7 – 1.0  Strong association 

 
 
Calculation First, if you haven’t already confirmed linearity by regression, do a 

scatter plot to check that the relationship is linear. Computer 
software will calculate r but the equation is.  

 
 
 
 
 
 Note: This is mathematically equivalent to the square root of the 

coefficient of determination (R2). In other words r2 = R2 
 
  

  
TotalSS

SSRegression=r  

 
Significance test for r  A t-test is used to test whether r is significantly different from zero. 
 
 In the above example the correlation co-efficient turned out to be 

0.846 which suggests a strong association. 
 
 
 
 
Spearman's rank correlation (r s) A non-parametric equivalent for Pearson’s correlation coefficient. 

Used when the sample size is small (< 10 patients), where the 
variables are not Normally distirbuted or where one variable tends 
to increase in some fashion with respect to another but not 
necessarily linearly. 

 
Basic method The variables are ranked separately. The differences between the 

pairs of ranks for each patient is calculated, squared and summed. 
The sum is used in Spearman’s rank correlation equation (see 
appendix) to give rs

 which is interpreted in the same way as r. 
 
Key Points 
 

• Correlation is the assessment of the closeness of the relationship between two continuous variables. 
• If the relation is linear, the test used is the Pearson correlation coefficient (r)  
• The closer r is to 1, the more likely there is a relationship  
• Linear regression is the drawing of the line that best describes the relationship between two linearly 

related variables. 
• The equation of the line takes the form of y = a + bx where b, the regression coefficient, is the slope of 

the line and describes the proposed relationship 
• The goodness of fit of the line to the data points is given by R2 

 
 
 

( )( )
( ) ( )∑∑
∑

−−

−−
=
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MULTIVARIATE ANALYSIS 
 

Multivariate analysis  
Definition While univariate methods such as  t-test or relative risk assess the 

relationship between an outcome and a single predictor variable, 
multivariate methods must be used to assess the relationship 
between multiple variables and an outcome. Some examples of 
multivariate methods are listed in Table. 

  
Multivariate methods Characteristic Risk score 
Multiple linear regression Outcome on a numerical scale but 

binary confounders such as 
smoking and sex can factored in 

Regression coefficient  

Logistic regression Outcome on a binary scale Fitted regression coefficient 
Odds ratio 
Probability of an outcome 

Mantel-Haenszel X2test Assesses relative influence of 
several groups of categorical data 
on an outcome. Similar in use to 
logistic regression 

OR 

Proportional hazards Outcome time to event eg death Hazard score 
Discriminant analysis More than two outcome categories  
 

Multiple linear regression 
Definition A method used to assess the impact of several variables on an 

outcome which has a numerical scale. In other words, after one 
variable x1 has been shown to influence y, would another variable 
x2 further influence y? 

 
Example of a problem Is there a relationship between birth weight and the dependent 

variables of maternal height and period of gestation? Birth weight 
can be shown in separate analysis to be linearly related to maternal 
height and gestation, but is gestation still important when the 
height of the mother is taken into account (and vice versa)?    

 
Basic principle The basic principle is to carry out separate regressions on the 

variables and add them one by one (largest first, then next largest 
etc) in the multiple regression equation below. At the same time, 
ANOVA and correlation analysis determine whether the addition 
of each successive variable improves the prediction of an outcome 
or whether it increases the residual scatter to a point of no 
significance.  

 

....2211 xbxbay ++=  

 
Binary confounders Binary confounders such as smoking and sex can be factored into 

the equation 

Logistic regression 
 
Definition Regression analysis where the outcome is a binary categorical 

variable such as death. Often used in attempting to identify 
important factors in the production of an adverse outcome. If the 
predictive variables are binary as well, their relationship with the 
outcome can be expressed as an odds ratio (OR). 
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 AGREEMENT 
 

The Bland-Altman plot 
 
Why not use regression and correlation to  If the results of one measuring technique differ consistently from 
assess agreement between measurement  another by a constant amount, the correlation will appear strong but, 
techniques? in fact, the agreement is poor.  
 
What is the Bland - Altman plot? The Bland - Altman method is to plot the differences between each 

set of measurements against the mean of each set of measurements. 
If there is close agreement, a line around zero will be formed. If 
there is a consistent difference between the measurements, the plot 
will form a line above or below zero. 

 
 
 
 
The graph on the right illustrates the plot of 
haemoglobin measurements by a laboratory 
technique against those made using a theatre 
‘HemoCue’ device. The plot is a straight 
forward linear regression and shows that 
there is close correlation between the 
techniques...but is there agreement?   
 
 
 
Figures 12 a and b. Comparison of a linear 
regression model and the Bland - Altman 
plot. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The Bland - Altman plot shows that there is a fairly consistent difference between the two techniques, with 
HemoCue values being about four units greater than lab results. This graphically illustrates that although 
correlation maybe strong, agreement is not. If agreement were ‘strong’ the mean values would follow a line of 
zero difference. 
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What is Bias and Precision ? The mean difference between the measures is called the bias and 

the standard deviation of the difference is called the precision. The 
bias tells us how well the two measures agree in general. For 
example, a bias of +1.5 suggests that one produces readings which 
are, on average, 1.5 units greater than the other.  
The precision gives us an indication of the spread of measures in 
the individual’s study. If there is close agreement between the 
measures, there will be very little spread. If there is a large spread 
there will be uncertainty in the prediction of agreement or 
otherwise. As with the 5 percent percentage points in parametric 
testing, the standard deviation can be multiplied by 1.96 to give 
the limits of agreement, within which 95% of all values should lie. 

 

The Kappa statistic 
Definition The Kappa statistic is used to assess the agreement or reliability 

between two observers who are performing a test which has a 
categorical variable.  

  
Example Two clinicians auscultating a group of elderly patients to 

determine which has aortic stenosis and which don’t. 
 
Basic principle  A 2 x 2 contingency table is constructed with the two observers’ 

predictions.  The actual agreement between the clinicians would 
seem, at first, to be easy to determine from this but the Kappa 
statistic adjusts the value by removing the proportion of agreement 
that is expected by chance alone.  

 

The kappa statistic 
E

EA

−
−=

1
κ   

 Where A is the proportion of times the observers agree and E is the 
proportion of agreement expected by chance. 
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                   0.15              3.0                                               0.65                       1.0  

Angina           0.3 
 
Hypertension 0.5 
 
Both               0.15 
 
Total              0.65 

Probability (angina or HBP or both) = P angina + P hypertension   –  (P angina x P hypertension)   
 

Figure. 13. Example of the multiplicative rule in proportions 

 

 PROPORTIONS 
 
 
See also  Binomial distribution 
 Chi square 
 Calculation of power and sample size 
 
 
Arithmetical handling of proportions What is the probability of two specific events occurring when we 

know the probability of each occurring separately ?  
 
Multiplicative rule  Used to calculate the probability of both of two, unrelated, 

independent, events occurring. 
 
Example What is the probability of a couple who are planning to have two 

children, having two girls? 
 
Calculation The probability of the first child being a girl is 1/2. The next time 

the probability of having a girl is 1/2 again but the overall 
probability that the second child is also a girl is half of this ie 1/2 x 
1/2 = 1/4.  

 
Additive rule  This is used when two events can occur together and allows you to 

calculate the probability of the occurrence of one or other of the 
two events or both events together. 

  
Example What is the probability that a randomly selected individual has 

either angina or hypertension (HBP) or both, when the prevalence 
of angina in the population is 0.3 and the prevalence of HBP is 
0.5. 

 
Calculation The answer is 0.65 (rather than 0.8) because some of the 0.5 with 

HBP will also have angina and vice versa. See figure below 
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CHI-SQUARE (X2) 
 
 
 
Definition A test to assess whether there is likely to be a real difference in the 

frequency of a categorical event between two or more groups. The 
principle is to construct a contingency table and to compare the 
observed frequencies with those which would be expected if there 
is no difference between the groups.  

 
Assumptions The samples are randomly selected from a population, 

observations are independent and expected frequencies are not 
small.  

 
Step by step example Is there a difference in the frequency of vomiting between exposed 

and non-exposed patients. (Exposure might be antiemetic) 
 
 
1. Construct a contingency table of the observed frequencies (O) :- 
 
 
  

 Vomiting No vomiting Total 

Exposure 8 22 30 

No exposure 16 9 25 

 24 31 55 

       
 Observed frequencies 

   
 
2. Construct a contingency table for the frequencies that would be expected if the exposure made no difference to 
outcome.  The calculation is straightforward:  
 

Expected frequencies (E) =  (column total x row total) / overall total 
 
 

 Vomiting No vomiting Total 

Exposure 13.1 16.9 30 

No exposure 10.9 14.1 25 

 24 31 55 

         
  Expected frequencies 

 
 

3. For each cell calculate:     
( )

E

EO 2−
 

 

4. Sum all four cells to get  Χ 2  
( )

2842.6
2

2 =−=∑
E

EO
X   

 
5. Consult the X2 distribution.  The calculated value for X2 is located in the X2 distribution tables at 

the appropriate degrees of freedom. (Degrees of freedom for X2 = 
product of (number rows -1) and (number columns -1).  
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 In the above example there is one df and the probability of there 
being no difference is p = 0.0122.  

 
Further  points about the X2 test The X2 test is carried out on the actual numbers, not the percentages 

or proportions. 
 
 The X2 test mentioned above is strictly called the Pearson X2 test. 
 
 The X2 distribution is a continuous frequency distribution of 

probabilities which is consulted in numerous tests other than the 
above.   

 
 Sample size: The probabilities obtained from X2 assumes the 

distribution of probabilities is continuous. This is not the case. The 
data is discrete and there are only a limited number of probabilities 
possible for each scenario. This leads to an increase in the 
possibility of Type 1 error particularly if numbers are small 

 
Fisher’s exact test This is the preferred alternative to the Pearson X2 test in 2 x 2 

contingency tables where the sample size is insufficient. Sufficiency 
is defined as: 

 All expected values must exceed 1 
 80% of expected values must exceed 5. 

  
 Fisher’s exact test is a complex calculation and may engage a 

computer for several hours in a large contingency table. 
  
Yates continuity correction   An alternative to Fisher’s but little used now. The continuity 

correction is applied to reduce the overall value of X2 .  
 

( )[ ]
∑

−−=
E

EO
X

2
2 5.0

 

 
 

Other forms of Chi-square 
Chi-square for larger tables Estimates if there is a difference in the frequency of an observation among 

several groups 
Chi-square test for trend If there is a natural order to the groups, this test looks for an increasing or 

decreasing trend  
Usually used for a table where there are two rows (eg fatty diet and non-fatty 
diet) and several columns of a variable that increases in value (eg skin fold 
thickness). Does the proportion of those in the fatty diet group increase with 
increasing skinfold thickness? The above test is able to determine whether 
such a relationship exists and is a much more powerful test than the usual chi-
square.   

McNemar’s chi-square test Used with paired data, such as the frequency of an observation in a single 
group of patients before and after an intervention.    

Mantel-Haenszel  A multivariate test which can be used to assess the impact of confounders on 
a group outcome. 
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RISK 
 
 
Chi-square vs risk analysis While Chi-square assesses whether there is likely to be a real 

numerical difference in the frequency of an event between groups, 
risk analysis gives an indication of the strength of association 
between the groups.  There are several ways to score risk. Three of 
the most common are the relative risk, odds ratio and number 
needed to treat. 

 
Incidence (rate) of disease Quantifies the number of new cases of disease that develop in a 

population at risk during a specified time period 
 
Prevalence of disease Quantifies number of existing (new and old) cases of disease in a 

population at a given point or period in time 
 
 
Cohort studies  A study where a sample of patients. some of whom are exposed to 

a risk factor and some not, are followed over time to determine 
which develop the disease.  Almost always prospective although it 
is possible to follow a cohort retrospectively. The most commonly 
used risk score is the relative risk although odds ratios may also 
be used.  

 
 Cancer No Cancer 
Smoking a b 
Non-smoking c d 

 
 
 
Case-control studies A study in which cases are identified retrospectively as having a 

disease (eg DVT) and compared with controls without disease. 
The number of cases and controls which had the exposure  of 
interest (eg OC pill) is compared.  Risk analysis is with the odds 
ratio. 

 
 

 DVT Controls 
OC pill a b 
No OC pill c d 

 
 
 
Relative risk (risk ratio)   
 
Definition Relative risk is the ratio of the incidence of disease among 

exposed to the incidence among non-exposed. Also called the 
incidence risk.  

 

 
( )

dc
c

ba
a

RR

+

+==
exposed-non among incidence

exposed among incidence
 

  
Key points -RR is a true risk in that a RR of 3.0 means there is three times the 

risk and a RR of 0.5 implies the risk has been halved. A RR of 1.0 
implies no association. 
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 -The RR is reported with a CI. If the CI includes 1.0 the RR is not 
significant. 

 -The RR is a common risk score in cohort studies. 
 
 
 
 
 
 
Odds ratio (OR)   
 
Definition The odds of disease is the number of cases who have disease 

divided by the number who do not have the disease. The odds 
ratio is the odds of the disease in exposed over the odds of the 
non-exposed.  

  

 
( )

d
c

b
a

OR ==
exposed-nonin  disease of odds

exposedin  disease of odds
 

 
Key points -Unlike RR, the OR does not give an exact value for risk. In 

general they tend to overstate the risk, being smaller than the RR 
for values over 1.0 and less than RR for values under 1.0.  
However, the OR is approximately the same as the RR when the 
outcome is rare.  
- As with RR, an OR of 1.0 implies no association  

 - OR is reported with a CI. If the CI includes 1.0 the OR is not 
significant. 
- In retrospective case-control studies, the OR must be used rather 
than RR because there is no information on the numbers of all 
exposed and non-exposed.      

  
 
A useful acronym?     Backward  coHort 

    OR    Ahead  (ie prospective) 
 coNtrol    RR 
     Exposure  Disease 
 

 
 
Number needed to treat (NNT)  The number of patients who need to be treated in order to avoid one 

adverse event.  The NNT is the reciprocal of the absolute risk 
reduction.  

    
What advantage does this have over RR? The NNT gives the RR some relevance in terms of the magnitude of 

clinical effect. For example, if the incidence of an adverse event is 
only 0.6:1000 (0.06 %), a 33% reduction in risk (RR = 0.33) will 
produce an absolute risk reduction of only 0.02 %. The NNT to 
prevent one adverse event would be 5000. However, if the adverse 
event had an incidence of 6:100 (6 %), a 33 % risk reduction would 
produce an absolute risk reduction of 2 % and a NNT of only 50.   

 
Re-cap on calculation of NNT An intervention reduces mortality from 45 % to 25 % 
 Absolute risk reduction  = 20% 
 NNT    = 100 / 20 = 5 
 
 
For other risk scores  See appendix 
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Confounding variables in case-control studies 
 
Definition A form of bias that occurs when the demographics of the groups 

studied are different and those demographics influence the 
outcome. 

 
Example In a study that aims to compare the incidence of urinary retention 

between PCEA and PCA, the mean age should be the same in both 
groups as the elderly have a higher incidence of retention than the 
young. As well as age, other common confounders include gender, 
BMI, coexisting medical conditions. 

 
Prevention of confounding problems: 
 
Design stage Large samples 
 Randomization 
 Stratum matching eg several studies with different age groups 
 Matched design (see appendix) 
 
Analysis stage Subdivide into different age groups and analyse each separately. 
 Mantel-Haenszel test. A multivariate test which can be used to 

assess the impact of confounders on a group outcome.  
 Logistic regression 
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PREDICTIVE ABILITY OF TESTS 
 
 
How is the quality of a test assessed? Compare test with a gold standard or assess its ability to predict a 

clinical outcome  
 
Example The value of intra-operative intra-operative ST segment 

depression might be assessed by comparing with echo detection of 
regional wall motion abnormalities or by its ability to predict an 
adverse cardiac outcome such as myocardial infarction 

  
What methods are there to assess a test? Sensitivity and specificity 
 Positive and negative predictive values 
 Receiver operating characteristic curve 
  
 
Sensitivity     The ability of a test to detect the disease; the proportion of  
     disease that was correctly identified; the true positive rate. 
 
     ie true positive rate  =  a / a + c =  1 - false negative rate 
 

 
 
Specificity The proportion of no-disease that was correctly identified  

The true negative rate.  =  d / b + d = 1 - false positive rate 
 (I usually think of a highly specific test as one with few false 

positives) 
 
Key points Particularly important in screening tests 
 Not affected by the prevalence of disease 
 Increased sensitivity is usually at the expense of specificity 
  
 
Positive predictive value : The proportion of a test's positive results which are true positives.   

a / a + b 
 

 
Negative predictive value  The proportion of a tests negative results which are truly negative.  

d / c + d 
 
 

    Outcome 
 

  Yes No 
 
Test  + ve a b 
 
 - ve c d 
 

    Outcome 
 

  Yes No 
 
Test  + ve a b 
 
 - ve c d 
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Key points Positive and negative predictive values take into consideration the 
prevalence (prior probability) of the disease.  If a disease is 
common, such as ischaemic heart disease in vascular patients, 
intra-operative ST segment depression is truly likely to represent 
ischaemia. If ST segment depression occurred in obstetric patients 
it is unlikely to be a true positive. This would be reflected in a 
higher PPV in the vascular group than the obstetric group. The 
sensitivity and specificity of the test would, however, remain te 
same. An example of this is found in the appendix. 

 
 When recalling the differences between sensitivity/specificity and 

predictive values remember that sensitivity/specificity looks at 
disease and absence of disease and determines how much was 
picked up correctly. On the other hand, positive predictive values 
(PPV) and negative predictive values (NPV) look at the subject 
from the point of view of the tests positive and negative results 
and determines which were correct. 

 
 

Receiver operating characteristic curve 
 
 
What is it? A plot of sensitivity against false positive rate for several values of 

a diagnostic test. 
 
What is it used for? Used to illustrate the trade-off between sensitivity and specificity 

in tests that produce results on a numerical scale, rather than as an 
absolute positive or negative result. The ROC curve can be used to 
compare different tests or to help choose the cut-off points. 

 
How is it formed? Take Troponin I levels in the diagnosis of myocardial infarction, 

for example. Several different Troponin plasma concentrations 
would be chosen and compared against a gold standard in 
diagnosing MI, such as echocardiographic evidence of new and 
permanent wall motion abnormality. The sensitivity and specificity 
of each chosen Troponin level would be determined and plotted. 

 
What would a good test look like? The ideal cut-off point is one which picks up a lot of disease (high 

sensitivity) but has very few positives (high specificity). One is 
usually a trade off for the other. 

 A test that produced one false positive for every true positive is 
very poor and the plot would follow the diagonal.  

 The ideal cut-off point would, in most cases, be high on the left 
hand side of the graph and would lead to a large AUC. 

 If the consequences of a false positive result were worse than those 
of a false negative result the chosen cut-off point would be lower 
and further to the left.  

Likelihood ratio 
What is it? The LR is a statistical tool which enables you to assess the actual 

chances of a patient having a target disorder (the post test odds) if 
a test result has reached a particular level. To calculate the post 
test odds, the pre test odds (usually the prevalence of disease in 
the population) are multiplied by the LR. 
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How do you calculate the LR? The likelihood ratio of a positive test result (LR+) is sensitivity 
divided by 1- specificity. The likelihood ratio of a negative test 
result (LR-) is 1- sensitivity divided by specificity. 

 
 
  
Example from Greenhalgh Prevalence of iron deficiency anaemia 5% 
 Pre-test probability = 0.05 
 ∴ Odds of having IDA = 0.05 / 0.95 = 0.053 
 LR of IDA when Ferritin level between 18 and 45 ug  = 3  
 Post test odds of IDA = 0.53 x 3 = 0.159 
 Which is equivalent to post test probability  = 14% 
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Figure 14.  ROC curves for two tests. Test A can be seen to be a better test than B because the ROC curve 
extends much higher into the top-left part of the graph. This means that there are results in that portion that have 
high sensitivity (high pick-up rate) and high specificity (few false positives). the quality of the test can be 
quantified by measuring the area under the ROC curve..  
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POWER AND THE CALCULATION OF SAMPLE SIZE  
 
 
The problem It is unethical and a waste of time and money to embark on a study 

to see if a drug is effective, if there is a significant chance of a false 
negative result. The commonest cause of a false negative result is 
that the sample size is too small.  The larger the sample, the more 
likely it is that the true effect of the intervention will be 
demonstrated.  

 
 
An example We all know that coins come down, on average, 50% heads. This is 

the ‘true’ effect. But how many times would you have to toss a coin 
to convince a sceptic that, on average, it does produce 50% heads? 
If you only tossed it six times, the most likely proportion would be 
50% heads but it could quite easily be markedly different from that, 
with even 0% or 100% being eminently possible! If, on the other 
hand, you tossed it one million times you would almost certainly 
produce the 'true' value of 50% heads (± a very small decimal point) 
with proportions markedly different from that being almost 
impossible. In research we cannot have samples of one million, so 
we have to compromise and say 'What is the smallest sample I need 
to be almost certain of producing the true result?'.  

 
 
Power The Power of a study is the chance of it successfully demonstrating 

the ‘true’ result. Power can also be expressed as one minus the false 
negative rate or (1-β error). 

 
Required input to sample calculation 1) First decide what will be regarded as the desired effect size. This 

might, for example, be a desired fall in blood pressure when an anti-
hypertensive is to be compared with a placebo. The actual input into 
the calculation differs depending on the sort of study you are 
carrying out. You may perhaps be required to input both a desired 
successful effect (π) and what will be regarded as no effect (the null 
hypothesis value, π0). The smaller the effect size the larger the 
required sample.  

 
2) Next you decide on how certain you want to be of picking up the 
true effect. In other words, you decide on the Power. 
Conventionally we usually want a power of 80 to 90 %. Remember 
that the higher the power the larger the sample that is required. 
 
3) Choose your significance level, the alpha value. Usually we will 
choose 0.05. The smaller the alpha value, the larger the required 
sample. 
 
4) Studies that are assessing the difference between sample means 
require a prediction of variance within samples. This can be 
‘guesstimated’ from pilot studies or literature searches. The larger 
the variance, the larger the required sample  
 

Basis of calculation Remember that even if a drug has the desired/predicted effect, a 
study will not necessarily reproduce that exact effect. Because of 
random variation, there is a range of possible results centred around 
the true value. There will also be a spread of possible outcomes 
around what you regard as the null hypothesis value. The two 
distributions of positive and negative possibilities are likely to 
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overlap. The only portion of the distribution of all possible positive 
results that can be regarded as significantly different from the 
distribution of negative results, is that which are beyond the 5% 
percentage point of the negative distribution. If you want a power of 
80%, this proportion must be at least 80% of the total possible 
positive results.  
As we know, as the sample sizes get bigger, their distributions 
become narrower and narrower as the majority of results cluster 
around the true values (ie the mean). There will, thus, be less and 
less overlap between the chosen negative and positive value 
distributions as sample sizes get bigger. 
In the practical setting this means that if you choose a large sample, 
and the drug has the effect you desire, the study result is likely to be 
near to the true result and less likely to fall within the ‘non 
significant’ range  

 
 

 
 
 

Sample size calculation 
 
Approaches: 
 

Effect 

The 5% percentage points  

Distributions of all possible 
random variations on ‘no’ 
effect and ‘effect’ with 
sample sizes of 20 patients. 

The 5% percentage points  

Increasing the sample size 
results in relatively more 
cluster around the mean. the 
greater proportion of the 
‘effect’ distribution can now be 
shown to be significantly 
different from the ‘no effect’ 
distribution. here, 95% of 
possible results would be 
significantly different form the 
distribution around ‘no effect’ 

Figure 15. Illustration of how ‘no effect’ and ‘effect’ distributions separate as sample 
size becomes larger. This increases the probability of showing  that an effect is 
significantly different from ‘ no effect’. 

π πo 

Only the shaded portion (60%) 
of the distribution of ‘effect’ 
distribution is significantly 
different from that of ‘no effect’ 

Distributions of all 
possible random 
variations on ‘no’ effect 
and ‘effect’ with sample 
sizes of 100 patients. 
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1. ) Formulae There are complex formulae for estimating the required sample size. 
Different formulae are required for different study designs. These 
can be obtained from text books but mostly we simply use computer 
software. The basic input to each formula is similar in concept: 

 
Comparing Proportions:   Significance level (α) 

Desired power (90 %)  (actual input is 1-power or the β error) 
π   =   proportion of interest ( 0.7 here) 

     π0 =   null hypothesis proportion (0.5) 
      

    
Comparing the means of two samples: Significance level (α) 

 Desired power (actual input is 1-power or the β error) 
Proposed difference between the means (∆) 
Standard deviations of the samples 

 
 

2)  Lehr’s quick formulae For unpaired t-test or Chi-squared test there is a quick formula for 
calculating the sample size for a power of 80% and an alpha value 
of 0.05. It requires the calculation of the Standardized difference 
which is the effect size divided by the standard deviation. 

 

 
( )2difference edstandardiz

16
 size Sample =  

 
  (For a power of 90% the numerator is 20) 
 
 
3) Altman’s normogram This normogram can be obtained from texts. A line is drawn 

between a column of Standardized differences and a column of 
Powers. This line will intersect a third column of sample sizes (N). 
The sample size can be read off at two different alpha values. For an 
Unpaired t-test you use N/2 for each sample. 

 
 

Further points regarding sample size calculation 
 
Adjustment for losses/non-compliance In most studies there will be losses for various reasons such as loss 

to follow-up and non-compliance.  
 
Losses  Inflate sample size by: 1/ (1-predicted total loss rate) 
Non compliance Inflate by 1/(1-predicted total non-compliance rate)2 
 
Precision based calculation The above sample size calculations are aimed at power based 

hypothesis tests. Precision based sample size calculations are used 
when you want to estimating a variable to within a certain level of 
precision. Thus, instead of factoring in Power you stipulate a certain 
CI for the estimate. The narrower the CI, the greater the sample size 
required  

 
Sequential trial design 
 
This allows a clinical trial to be carried out so that, as soon as a significant result is obtained, the study can be 
stopped, thus minimising the sample size, cost and morbidity. 
As each patient is tested, their results are plotted on a graph. The upper and lower borders of the graph are drawn 
depending on the number of patients tested, the power and the desired significance level. If A is better than B, 
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the line moves one up and one to the right and, if B is better than A, the line moves one down and one to the 
right. When the line crosses an upper or lower border, a significant difference has been attained and the study 
stopped. If the line crosses the right hand border there is no difference between the groups and the study is also 
stopped. (Figure 16) 

 
 

 
 

 
Figure 16. Sequential trial design 
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ERRORS IN RESEARCH 
 
Random error 
 
Definition Error introduced by a lack of precision in conducting the study. 

Reduced by meticulous technique and by studying large numbers. 
 
Bias 
 
Definition The introduction of a systematic error. Not reduced by increasing 

sample size. Experimental bias specifically is a bias towards a 
result expected by the human experimenter.  

 The list of potential areas for experimental bias is huge. Sackett in 
Journal of Chronic Disease 1979 produced a comprehensive list. 
The basic classification and some examples are listed below. 

 
1. Reading up on the field Only reading articles that agree with experimenters view 
 Only reading articles with positive results 
 Only reading hot, topical articles 
 
2. Specifying and selecting sample Inadequate sample bias 
 Volunteer bias – volunteers respond differently to patients 
 Confounders not accounted for 
 Randomisation inadequate 
  
3. Executing the experiment Withdrawal bias – withdrawals not accounted for 
 Compliance bias 
 Contamination bias 
 Influencing experiment through personality 
 Inadequate or bogus control 
 
4. Measuring outcomes Insensitive measure bias 
 Expectation bias – pushing result towards expectation 
 Recall bias 
 Instrument bias 
 End digit preference – rounding measurements up needlessly 
 
5. Analysing the data Post hoc significance- assuming cause and effect    
 Data dredging / torture  
 Over simplifying  
 Repeated peeks bias – should not make judgements until pre-

determined sample numbers achieved 
 Using wrong test – (see below) 
  
6. Interpreting analysis Correlation / cause and effect bias 
 Magnitude bias – suggesting the effect is bigger than it is 
 Significance bias - suggesting significance greater than it is 
 
See chapter on Study Design for compressed alternative version 
 

COMMON BIAS  
PROBLEM 

 
EXPLANATION PREVENTION 

Selection bias One group has different risk than the other Randomization, Cross over 
 

Detection bias Observations in one group not sought as diligently as in 
the other. 

Blinding 

Observer bias The observer is able to be subjective about the outcome Observer blinding, outcome 
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measure design 
Recall bias The patients’ ‘treatment group’ allocation influences the 

way they report past history and symptoms. Eg if the 
patient knows they are in the placebo group they may 
exaggerate their ‘untreated’ symptoms  
 

Patient blinding  

Response bias Patients who enrol in a trial may not represent those of 
the population as a whole. e.g the obese patients who 
enrol in a weight loss medication trial may be more 
motivated than those in the general population. 
 

Random selection from population 

Regression to 
the mean 

Random effects may cause a rare, extreme variation on 
a measurement. If the measurement is repeated, the 
likelihood is that the measurement will be less extreme.  
Thus, if a treatment had been given after the first 
measurement, it would erroneously appear, on the basis 
of the second measurement, that it had had an effect. 
 

Control group 

Hawthorne 
effect 

The actual process of studying and following up 
patients influences the outcome. eg  chronic headache 
may improve in patients who are being studied and 
regularly followed up. 

Control group; mask intention of 
study from patient 

 
Sample size too small This introduces a form of bias in that a false negative result is more 

likely. Type II error increased. 
Confounding 
 
Definition A form of bias that occurs when the demographics of the groups 

studied are different and those demographics influence the outcome. 
 
Example In a study that aims to compare the incidence of urinary retention 

between PCEA and PCA, the mean age should be the same in both 
groups as the elderly have a higher incidence of retention than the 
young. As well as age, other common confounders include gender, 
BMI, coexisting medical conditions. 

 
Prevention of confounding problems: 
 
Design stage Large samples 
 Randomization 
 Stratum matching eg several studies with different age groups 
 Matched design (see appendix) 
 
Analysis stage Subdivide into different age groups and analyse each separately. 
 Mantel-Haenszel test 
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Errors at analysis stage 
 

ERROR COMMENT 
Parametric tests used instead of non-parametric This error may occur if: 

- the population is not normally distributed  
- the sample is too small to be sure of its’ 

population distribution 
- ordinal data are treated as interval data 
 

Non-parametric test used instead of parametric Parametric tests are more ‘powerful’ and should be 
used when appropriate 
 

Multiple inter-group t-test comparisons instead of 
ANOVA 
 

Increases the chance of type I error 

Paired data treated as unpaired 
 

Increases the chance of type II error 

One tailed test used instead of two tailed test 
 

Increases chance of type I error 

Chi- square used when numbers too small - Yates correction should be used in 2 X 2 tables 
- Fisher’s exact test should be used if expected value 
for two or more cells is  < 5 

 
 

Errors at presentation and publication stage 
 

ERROR COMMENT 
Failure to report data points or SD or SEM 
 

Unprocessed raw data is helpful in interpretation 

Reporting mean with SEM rather than SD SEM is a smaller, more processed number. Gives false 
impression of a trend in a sample 

Failure to give explicit details of study design and 
statistical analysis 
 

 

Publication bias Negative studies less likely to be submitted and / or 
published than positive ones All well conducted 
studies should be submitted and (ideally) published. In 
meta-analysis, absent negative study should be sought 
for by way of funnel plot analysis. 
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SYSTEMATIC REVIEWS AND META-ANALYSIS 
 
 
Systematic review A systematic review is a highly structured process in which an 

attempt is made to answer a specific clinical question by collating 
and analysing the data from all relevant trials. The key elements of a 
systematic review are outlined in the table below. 

 
Meta-analysis The mathematical process by which the data from several trials are 

combined to give a single pooled estimate of effect. Usually part of 
a systematic review. 

 
 

Systematic reviews: Key steps 
Focussed clinical question 
(FCQ) 

A systematic review addresses a specific clinical question 

Inclusion and exclusion criteria The studies are selected using clearly defined predetermined inclusion 
and exclusion criteria. Importantly, studies must only be included which 
address the specific FCQ. Other considerations will include the type of 
trial, language, outcome measures, methodology etc 

Sources for the search  The sources for the search are decided beforehand and are clearly 
documented. Sources are likely to include all online databases, a hand 
search of anaesthesia journals, reference lists from journals, citations, and 
personal consultations with experts.  

Outcome measures Trials addressing the same FCQ may have slight variations in outcome 
measures.  The protocol for the systematic review must define the 
specific outcome measures to be used.  

Validation The fact that the studies have been published does not necessarily mean 
that they have been adequately validated. Once studies have been 
identified they must be properly validated before inclusion in the meta-
analysis. Validation will often be carried independently out by two 
individuals, one preferably without expertise in the topic under review.  
They assess adequacy of treatment allocation concealment, blinding,  
consistency of trial management, patient withdrawals during the trial etc  

Assessment of heterogeneity See below 
Meta-analysis See below 
Reliability of pooled result The pooled result becomes more credible when there is a big difference 

in treatment effect, a statistically significant difference in treatment 
effect, consistency across the studies, indirect evidence to support the 
difference, biological plausibility.  

Sensitivity Analysis Once a pooled effect measure has been reached it is worth re working the 
analysis by, for example, using an alternative mathematical model or by 
excluding outliers or by excluding  trials of arguable quality. If you find 
that fiddling with the criteria in this way makes very little difference to 
the conclusions, the findings are relatively robust. If the findings 
disappear, the conclusions should be expressed more cautiously  

Conclusions and discussion  
 

Heterogeneity  
 
What is heterogeneity? Heterogeneity is diversity among study results greater than you 

would expect by chance alone.  
 
Types of heterogeneity Clinical heterogeneity is where there are significant differences in 

patient demographics between the studies 
 Methodological heterogeneity is where there are significant 

differences in the conduction and methods between trials. 
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 Statistical heterogeneity is usually a consequence of the above two 
and is a significant difference between the results of the studies. 
When the term ‘heterogeneity’ is used alone it usually refers to 
statistical heterogeneity. 

 
Assessing heterogeneity A utopian view of meta-analysis is that it can combine results from 

several identically conducted small studies and reach a more reliable 
conclusion on the large pool of data. In this ideal situation, the 
selected study results will not differ much from each other because 
they should all be conducted on the same types of patients and with 
the same methodology. Any difference in results will be small and 
due to chance.  
What, then, if the results of the selected studies differ rather more 
from each other? The reviewer must decide whether the differences 
between study results are so big that chance can’t account for it all. 
The latter would imply that there may be differences in trial 
methodology which have resulted in truly different effects, in which 
case trying to combine them to get a single pooled effect is 
inappropriate. There are two tests to help make an objective 
decision: 

 
i) Chi-square test for heterogeneity The more significant the test result, the less likely it is that the 

differences between trials are due to chance alone. Unlike much of 
medical statistics, an alpha value of 0.1 is employed here. Thus, a P 
value less than 0.1 is an indication that heterogeneity is significant 
and that perhaps the trials are not combinable. As a rule of thumb, 
the Chi-square should not be more than the degrees of freedom 
(number of trials – 1). If it is, heterogeneity is probably significant.  

 
ii) I 2 I2 is the percentage of variation across the trials that is due to 

heterogeneity rather than chance alone.  I2 less than 25% is low 
heterogeneity, > 50% significant and > 75% is high. 

 
Strategies for heterogeneity Ignore 

Check data 
 Do not undertake a meta-analysis 
 Explore and report the cause 
 Random effects meta-analysis 
 Change effects measure 

Exclude outlier studies 
 

Meta-analysis  
 
Fixed effects model   A meta-analysis technique that takes the standpoint that there is a 

single treatment effect or one true answer. Any variation between 
studies is solely due to random variation on that one true answer. 
The final estimate is, therefore, the best estimate of the proposed 
single treatment effect. 

 
Random effects model Takes the standpoint that there are a variety of similar treatment 

effects. The final result is therefore the average of several treatment 
effects. 

 
Pooled treatment effect The pooled treatment effect is calculated as a weighted average, 

with larger studies’ results carrying more weight in the calculation. 
The final pooled effect is commonly presented as an OR or RR.  
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The Forest plot 
 
A graphical display of the results of a meta-analysis.  
 
The following example is taken from a systematic review that examined hypotension during spinal surgery for 
caesarean section 
 

 
 
Figure 17: Forest plot 
 
Note the following points: 
 
i) The comparison and outcome measure are stated at the top left corner. There may be several meta-analyses 
looking at different comparisons in each systematic review.  
ii) Individual studies are plotted as boxes on the vertical axis. Size of box represents weighting of each study. 
iii) Weighting predominantly by sample size. Confidence interval of study is plotted. 
iv) Effect measure (commonly the OR or RR) is plotted on a log scale on the horizontal axis.  This means that 
increases and decreases in risk of the same magnitude have the same visual separation on the horizontal scale. 
v) Vertical reference line drawn at position of no treatment effect. (OR or RR = 1 ) 
vi) Pooled OR or RR displayed as a diamond and, sometimes, a vertical dashed line. Width of the diamond is the 
confidence interval of the pooled effect. 
vii) A P value is given for the strength of the overall effect. 
viii) The result of the test of heterogeneity is displayed with a P value. If P < 0.1, there is significant 
heterogeneity. 
ix) I2 statistic may also be displayed.    
x) The mathematical model (fixed or random)is displayed  
 
 
 
 
 

Review:   Techniques for preventing hypotension during spinal surgery for caesarean section 
 
Comparison:  Colloid versus crystalloid 
Outcome:  Patients requiring intervention for hypertension 
 
 
Study  Colloid Crystalloid  RR (Fixed) Weight  RR (fixed) 
      95% CI  (%)  95% CI 
 
Karinen 1995 5/13 8/13     19.5  0.63 (0.28, 1.41) 
 
Lin 1999  8/30 16/30     39.0  0.50 (0.25, 0.99) 
  
Riley 1995 9/20 17/20     41.5  0.53 (0.32, 0.89) 
 
 
Total (95% CI) 22/63 41/63     100.0  0.54 (0.37, 0.78) 
 
Test for heterogeneity chi-square = 0.18,  p = 0.914 
Test for overall effect = 3.25, p = 0.001 
 

0.1 0.2  1  5 10 
Favours treatment Favours control 

NB. Diagram has been drawn schematically. Absolute scale 
and point position not exact. 
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Funnel plot 
  
An adjunct to meta-analysis to aid the detection of bias. The funnel plot is a scatter plot of treatment effect 
against a measure of study size, the latter generally being represented by sample size. Normally one would 
expect larger studies to cluster near the true effect and smaller studies to have more scatter. In other words, the 
precision in estimating the true effect increases as the study size increases. The scatter of smaller studies should, 
therefore, be symmetrical about the ‘true effect’ because the scatter should be solely due to random independent 
factors. 
If there is asymmetry (a ‘hole’) there may be bias, particularly selection bias. The commonest cause of this is 
publication bias where small ‘negative’ studies have failed to be published. Other causes for an asymmetrical 
funnel plot include poor methodology of small studies, true heterogeneity and fraud. 
Note: Increasingly, the SE is plotted on the y axis instead of the sample size. This is because imprecision may 
arise even in large studies, if the effect size is small.   
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Figure 18: The Funnel Plot 
 
Random variation will cause a spread of study results around the ‘true’ result. The larger the study, the closer it’s 
result will be to the ‘true’ result.  A plot of results of all the studies against their size should, therefore, give a 
funnel shape.(a)  Large holes in the funnel suggest there has been publication bias. (b)  

Effect Effect 

(a) (b) Missing studies? 
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EVIDENCE BASED MEDICINE 
 
 

Basic points 
 
Definition The conscientious use of mathematical estimates derived from 

high quality research to make decisions about the clinical 
management of individual patients. 

 
Key components of EBM Ask an answerable question 
 Track down best evidence 
 Appraise / validate evidence critically 
 Implement results in clinical practice 
 Evaluate performance 
 
Thus, EBM requires you not only to read papers but to read the right papers at the right time and then alter 
your behaviour. 
 
Advantages Poor quality evidence may lead to morbidity / mortality 
 Traditional reviews prone to bias - systematic process more 

reliable 
 RCT’s reduce bias and weighted heavily in EBM 
 Mass of literature too much to read - EBM provide summaries 
  

Criticisms of EBM  
 
Criticism Defence 
Generalisations about populations not necessarily 
appropriate for individual patient 
 

No one is advocating cookbook medicine 

Co-morbidity in RCT’s may be less than those of 
clinicians’ patients 
 
Variability in RCT smaller than population so effect 
stands out. Over-estimation of intervention effect? 
 
Surrogate end points often used 

As above. Best evidence always useful but clinician 
must realise that it is not necessarily applicable to 
each individual patient. 

Expertise and clinical experience being devalued Decisions on the application of EBM to the 
individual patient requires expertise and clinical 
experience 

EBM has always been carried out Reading papers has , but EBM has not 
 
 

Hierarchies of evidence 
 
The hierarchy must not be regarded as all-powerful. The results of a well conducted trial in an inferior 
hierarchical category, will be more valid than those of a poorly conducted one in a superior category. 
There are several versions of the hierarchies including those of US Preventive Services Task Force, the NHMRC 
(Australia) and The Oxford Centre for EBM. The latter is the most comprehensive.  Two are given below. 
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NHMRC (Aus) Levels of evidence (abridged) 
I Systematic review 
II Properly designed RCT 
III – 1 Pseudo – RCT 
III – 2 Non-randomised cohort  with concurrent control; case-controlled study 
III – 3 Comparative study with historical control;  
IV Case series 

 
 
The following hierarchy has a different function being a categorization of Risk vs benefit. This one produced by 
the US preventative service task force.   
 

U.S. Preventive service task force Categories of recommendation 
Level A Good scientific evidence that benefits substantially outweigh risks 
Level B At least fair scientific evidence that benefits substantially outweigh risks 
Level C At least fair scientific evidence that benefits exist but balance benefit / risk balance too 

close to make general recommendations 
Level D At least fair scientific evidence that risks outweigh benefit 
Level I Scientific evidence is lacking, poor quality or conflicting 
 
 
 
 

 Systemic reviews and meta-
analysis 

Cohort studies 

Case-controlled studies 

Cross-sectional surveys 

RCT’s 

Other control trials 

Case reports 

Traditional hierarchy of evidence: Based on Trish Greenhalgh: How to read 
a paper. Blackwell Publishing. 
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STUDY DESIGN  
 
 
1. Specify research objective Occurrence of disease  
 Hypothesis testing 
 Understand disease causation 
 Evaluate intervention 
 
2.Specify target population Inclusion / Exclusion criteria 
 
3. Specify outcomes Primary – should directly answer the research objective. 

Preferably not be a surrogate outcome 
 Secondary – few as possible to avoid experiment-wide Type 1 

error and temptation for ‘data torture’. 
 
4. Requirement for control group if intervention study  
 
5. Sample size estimation Influences power and precision 
 May require a pilot study. Pilot study should be descriptive with 

confidence intervals but not a hypothesis test.    
 
6. Confounding Confounding variable is one which is associated with both 

outcome and main risk factor independently. Control in two ways: 
 Design – Observational study by matching, Randomisation in 

intervention trials 
 Analysis – Stratification 
 
7.  Prevent bias (abbreviated) Selection bias: Randomisation.  
 Observer bias : Allocation concealment and blinding 
 Response bias:  If patient or observer or analyst knows allocation 

they can affect outcome. Avoid with blinding and allocation 
concealment 

 Recall bias: Likelihood of side effects/ disease recall by patient 
will be influenced by knowledge of their treatment group. Avoid 
with blinding and allocation concealment. 

 Withdrawals: Tends to underestimate treatment effect / side-
effects.  Use Intention to treat analysis and analyse all randomised 
patients 

  
8. Data handling Responsibility, confidentiality, double data entry, database 
 
9. Statistical analysis plan Outline the statistical analysis strategy in protocol. Avoid data 

dredging 
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CLINICAL DRUG TRIALS 
 

 
Phase I Administration to (usually) healthy human volunteers to determine the 

pharmacokinetics and toxicology of the drug. 
 
Phase II Specific clinical trials to determine pharmacodynamics, efficacy and 

safety. 
 
Phase III Large clinical studies to determine cost-benefits, risks etc 
 
Phase IV Continued surveillance once drug is in marketed 
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APPENDIX 
 

 

KEY POINTS IN STATISTICS 
 
 

TOPIC KEY POINTS 
The normal distribution  1) A population in which there is a trend, a ‘normal’ value, 

and in which random (chance) variation has caused a spread 
around that trend.  
2) The spread is such that most values still cluster round the 
norm. Extreme variations exist but are rare. The random 
effect works equally above and below the norm. 
3) The shape of the plot is, therefore, bell shaped, 
symmetrical and theoretically of infinite size 
4) Because the spread has occurred through chance, the 
distribution is symmetrical and the mean = mode = median. 
5) A large sample taken from a normally distributed 
population also has a normal distribution. 
6) The larger the sample, the more likely it’s mean will be 
close to the population mean 
7) If multiple samples are taken from a normally distributed 
population, the plot of their means will also be normally 
distributed. 
 

Standard deviation   A measure of the spread of individual values around the 
mean of a population or a sample.  
 

Use of standard deviation 1. The SD gives an indication of the spread of values 
within a sample and, therefore, the reliability of the 
sample mean as an indication of a trend in a sample 

2. The SD of a large sample is similar to that of its 
population. This fact is used in parametric tests.  

3. Used to calculate the SEM 
 

Standard error of the mean An estimate of how the means of multiple samples would be 
spread around the population mean. 
 

Use of standard error 1. Derived from the SD, the SEM also gives an indication of 
the spread of values within a sample but it is more commonly 
regarded as an indication of the proximity of the sample 
mean to its population mean. 
2. Used in parametric tests comparing sample means. 
 

The standard normal distribution The basic template of the normal distribution where data are 
described in multiples of SD’s or SEM’s from the population 
mean.  

Parametric testing 
 

Tests based on the parameters of the normal distribution. 
The tests determine the probability of an effect being due to 
chance alone.  
 

z-value An expression in multiples of SD’s or SEM’s,  of the 
distance between a point and the population mean. Used in 
the normal (z) test. 

Null hypothesis An hypothesis to be tested that states that any difference 
found has occurred through chance alone. 

Mark Finnis
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P value  Calculated from the results. The P  value is the probability of 
an effect having occurred through chance alone if the Null 
Hypothesis is true.  
 

Alpha The significance level. Decided at the design stage. It is the 
limit at which P will be regarded as being too large for 
statistical significance.  
 

Alpha (Type 1) error Chance of there being no difference when you say there is 
one. False positive rate. 
 

Beta (Type II) error  Chance of there being a difference when you say there is 
none. False negative rate. 
 

95% Confidence interval (parametric test)  The range above and below the sample mean within which 
you predict with 95% confidence that the true value 
(population mean) lies.  
 

Confidence interval (general equation) CI = estimation ± a multiple of SE where multiple depends 
on assumed distribution and level of confidence. CI’s used 
when reporting OR’s, RR’s and many other statistics 

T-test A parametric test of means where the samples are too small 
to use the normal test. 
 

One sample t-test T-test where the mean of a sample is compared with a 
number 
 

Two-sample t-test 
 

T-test where two means are compared. 

Paired t-test 
 

T-test comparing the results of a single sample before and 
after treatment. 
 

One–tailed 
 
 

When there is only one direction that one group can vary 
from another, you only have to look in one tail for a 
significant result. 
 

Two-tailed 
 
 

If you don’t know for certain which way the test result will 
vary compared with another value, you must look in both 
tails 
 

Bonferroni’s correction factor Correction factor used to reduce alpha error when multiple t-
test comparisons are used.  
 

Analysis of variance  A method used to compare three or more parametric 
samples. The between groups variance must outweigh the 
within groups variance. 
 

Non-parametric testing 
 

Any test which is not parametric! Based on ranking when 
data is continuous 
 

Regression The drawing of the line that best describes the relationship 
between two continuous variables. 
Equation: y = a + bx  
 

Correlation The determination of the likelihood that the above 
relationship  does exist. 
 

The power of a study The probability of a study being able to demonstrate a 
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difference when a difference does exist.  
1-false negative rate.  
 

Information required when calculating sample size  
a) Comparing the numbers in two samples  

Alpha 
1-Power (ß) 
The predicted effect-size. 
Predicted standard deviations of samples 
 
 

Information required when calculating sample size  
b) Comparing a proportions  

Alpha 
1-Power (ß) 
The proportion you’re looking for 
Null hypothesis proportion 
 

Chi square 
 
 
 

Compares the frequency of a binary event within two or more 
groups 
Uses a contingency table 
Compares observed with expected values 
 

Relative risk 
 

The ratio of the incidences of an event with and without 
exposure 
 

Odds ratio The ratio of the odds of an event with and without exposure  
 

Number needed to treat The number of patients needed to be treated to produce one 
success or survivor 
 

Sensitivity The proportion of disease which is correctly identified. 
Highly sensitive test has very few false negatives 
 

Specificity The proportion of ‘no-disease’ which is correctly identified.  
Few false positives. 
 

Positive predictive value The proportion of a test’s positive results which true 
positives.  
 

Negative predictive value The proportion of a test’s negative results which are true 
negatives. 
 

Bland-Altman plot A plot used to assess agreement between two measuring 
techniques 
 

Receiver operating characteristic (ROC) curve A graph used to illustrate the trade off between sensitivity 
and specificity in tests that produce results on a numerical 
scale rather than as an absolute positive or negative.  
 

Systematic review A highly structured process in which an attempt is made to 
answer a specific clinical question by collating and analysing 
the data from all relevant trials. 
 

Meta-analysis The mathematical process of combining data from studies 
using similar treatments in a systematic manner. 
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GLOSSARY 
 
a intercept of y axis 
AR attributable risk 
α  significance level 
ANOVA analysis of variance 
b regression coefficient 
c.i. confidence interval 
d.f. degrees of freedom 
df degrees of freedom 
E expected frequency 
F statistic of analysis of variance 
H statistic of Kruskal-Wallis test 
Ho null hypothesis 
MS mean square 
µ population mean 
NNT Need to treat 
N population size 
NPV negative predictive value 
n sample size 
O observed frequency 
OR odds ratio 
P probability 
p proportion of outcomes in a sample 
PPV positive predictive value 
π population proportion 
πo null hypothesis proportion 
q statistic of the Student-Newman-Keuls test 
q' statistic of Dunnett's test 
r Pearson's correlation coefficient 
rs Spearman's rank correlation 
r2 coefficient of determination 
r x c  rows x  columns table 
RR relative risk 
σ population standard deviation 
σ2 population variance 
s sample standard deviation 
s standard error of the regression 
s.d. SD  standard deviation 
s2 sample variance 
SS sum of squares  
s.e., SE, SEM standard error of the mean 
SND standard normal deviate 
t statistic of the t test 
U statistic of the Mann-Whitney U test 
x individual value; explanatory value in linear regression 
xi individual value 
x  sample mean 
y dependant value in linear regression 
yi individual / actual value in linear regression 
ŷ  predicted value in linear regression  

y  mean value of y in linear regression  

z standard normal deviate 
! factorial of a number (all integers from number down to 1 

multiplied together) 
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INDEX 
 
 
Additive rule , 34 
alpha error, 17 
Alpha error, 17 
Alpha value, 16 
Altman’s normogram, 46 
ANOVA, 25, 50 
Arithmetic mean, 6 
Attributable risk, 65 
Beta error, 17 
bias, 33 
Bias, 48 
Binomial distribution, 13 
Binomial formula, 14 
Bland and Altman plot, 32 
Bonferroni's correction, 26 
Box and whisker plot, 7 
Case-control studies, 37 
Categorical, 5 
Chi- square, 50 
Clinical trials, 58 
Cohort studies, 37 
confidence interval, 23 
Confounding, 49 
contingency table, 35 
Correlation, 30 
Data transformations:, 13 
Degrees of freedom, 8 
descriptive statistics, 6 
Detection bias, 48 
dichotomous, 5 
Discrete numerical data, 5 
Dunnett’s test, 26 
empirical frequency distribution, 9 
Expected frequencies, 35 
False negative, 17 
False positive, 17 
Fisher’s exact test, 50 
Fixed effects model, 52 
Forest plot, 53 
Friedman's test, 27 
Geometric mean, 6 
goodness of fit, 29 
Hawthorne effect, 49 
heterogeneity, 51 
Incidence rates, 65 
Interquartile range, 7 
Interval data, 5 
Lehr’s quick formulae, 46 
limits of agreement, 33 
Mann - Whitney U Test, 27 
Mantel-Haenszel, 39, 49 
Matched design, 39, 49 
Median, 6 
Mode, 6 
Multiple regression, 31 
Multiplicative rule , 34 
Negative predictive value, 41 
Neuman-Keuls, 26 
Nominal data, 5 

Non-parametric data, 5 
Normal Plot, 10 
Normal test, 18 
Number needed to treat, 38 
Numerical, 5 
observed frequencies, 35 
Observer bias, 48 
One tailed test, 50 
Ordinal data:, 5 
P value, 16 
Paired data, 50 
Parametric, 5 
Parametric tests, 18, 50 
percentage points, 11 
Percentiles, 7 
Poisson distribution, 15 
Population attributable risk, 66 
Positive predictive value, 40 
Post hoc tests, 26 
precision, 8 
Precision, 10 
precision., 33 
Prevalence, 67 
Proportional attributable risk, 65 
proportions, 13 
Proportions, 34 
Random effects model, 52 
Range, 7 
Ratio data, 5 
Recall bias, 49 
Regression, 28 
Regression to the mean, 49 
Risk, 37 
Scheffé, 26 
Selection bias, 48 
Sensitivity, 40 
Spearman's rank correlation, 30 
Specificity, 40 
Standardised difference, 8 
Stratum matching, 39, 49 
systematic error, 48 
t-distribution, 13 
The Funnel Plot, 54 
t-test, 21 
Tukey’s Honestly Significantly Difference (HSD), 26 
two tailed, 50 
two tailed tests, 19 
Type 1 error, 17 
Type 1 Error, 17 
type I error, 50 
type II error, 50 
Type II Error, 17 
variance., 7 
Wilcoxon paired-sample test, 27 
Wilcoxon rank sum test, 27 
Yates correction, 50 
z test, 18 
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APPENDIX 
 
 

Formulae 

The binomial equation ( ) ( ) ( ) rnr

rnr

n
srA −−

−
= ππ 1

!!

!
'Prob  

 n = sample size 
 π = population proportion 
 r = number of the outcome of interest 
 A = the outcome    
 
 

Poisson formula µµ −= e
r

rP
r

!
)(  

 P(r) = probability of r occurrences 
 µ = mean number of occurrences per unit time  
 

Calculation of SE in a two sample normal test  ( )
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Calculation of SE in a two sample normal test  
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Calculation of the SE in a two sample t-test 
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Spearman’s rank correlation equation ( )1
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−
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nn

d
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Risk scores 
 
Incidence rates  Relative risk given per year exposed:   
 =  incidence per year exposed / incidence per year non-exposed 
    
 
Attributable risk Indicator of magnitude of excess risk in absolute terms. eg how 

many extra cases of cancer per year were due to smoking? 
 = incidence among exposed  -  incidence among non-exposed  
 =  a / a + b  -  c / c + d  per unit population  
 
Proportional attributable risk: The proportion of disease among the exposed which is caused by 

the exposure (after the proportion which occurs without exposure 
has been taken into account ) eg of all the cases of lung cancer 
among smokers, what proportion can be attributed to smoking ?  
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Cases
DVT 

 Controls 
No DVT 

1 1 has same age, ASA, BMI as 11 11 
2 2 has same age, ASA, BMI as 12 12 
3 3 has same age, ASA, BMI as 13 13 
4 4 has same age, ASA, BMI as 14 14 
5 Etc 15 
6 Etc 16 
7 Etc 17 
8 Etc 18 
9 Etc 19 

10 Etc 20 
 

Cases
DVT 

 Controls 
No DVT 

1 and 11 were both on OC pill 
2  12 
3  13 

4 and 14 were both not on OC pill 
5  15 
6  16 
7  17 

8 and 18 were both on OC pill 
9  19 

10  20 
 

10 cases of DVT are found retrospectively and  
each is matched with a patient with the same 
confounders but with no DVT. 

Those pairs who both have the exposure or who 
both do not have the exposure are removed. Eg both 
on OC or both not on OC 

Cases
DVT 

 Controls 
No DVT 

1 and 11 were both on OC pill 
(2)  12 
3  (13) 

4 and 14 were both not on OC pill 
(5)  15 
6  (16) 

(7)  17 
8 and 18 were both on OC pill 

(9)  19 

(10)  20 
 

Pick out the cases and the controls who had used 
the OC pill. ( ) 

An odds ratio is then calculated to assess likelihood  
of risk associated with OC and DVT. 
 

OR = ratio of discordant pairs =  
 

number pairs where there is DVT + OC 
number pairs where there is no DVT + OC  

 
= 5 / 2 

     = AR / incidence among exposed   =  RR - 1/ RR 
 
 
Population attributable risk If the prevalence of the disease in the population is low, an 

exposure with a high relative risk may not actually cause many 
deaths. The PAR takes this into consideration by relating the 
overall incidence with the incidence among non-exposed.  

 = overall incidence - incidence among non-exposed 
 
 

Matched study design 
 
An example of a matched study Is DVT associated with oral contraceptive use? A retrospective 

case-control study is carried out. Patients who have had DVT are 
found and matched with patients of with the same confounders  
but without DVT. Their exposure to the oral contraceptive pill is 
then determined. 
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200

SBP

100

Day 1             Two weeks later

An isolated recording on day 1 reveals an extremely
high SBP. After two weeks of treatment there appears
to be a dramatic improvement. But is this secondary to
the treatment?

 

Regression to the mean 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Arithmetical demonstration of the effect of prevalence on predictive ability of a test: 
 
A test of known sensitivity and specificity is used to predict an outcome in Population A.  If it is then 
used in population B where the prevalence of the outcome is lower, prediction of a positive outcome 
becomes more difficult  but prediction of a negative outcome is easier  ie the PPV of the test becomes 
weaker and the NPV improves. 
 
eg 
 
Example 1.  Prevalence of disease = 11 %  (100 / 991) 
 
 yes no    
 
+ve 29 80     109 Sensitivity = 29 /100 = 29 %  (False negative rate = 71 %) 
-ve 71 811    882 Specificity = 811 / 891 = 91 % (False positives = 9 %) 
 
Totals 100 891   991 PPV test = 29 / 109 = 28 %, NPV test = 811 / 882 =  92 %  
 
 
Example 2.  Prevalence of disease = 4.8 %   (48 / 991) 
 yes no          
 
+ve 14↓ 87↑    101 Sensitivity = 14 / 48 = 29 %  (False negative rate = 71 %) 
-ve 34↓ 856↑  890 Specificity = 856 / 943 = 91 % (False positives = 9 %) 
 
Totals 48 943    991 PPV test = 14 / 101 = 14 %,  NPV test = 856 / 890 = 96%  
 
(Based on an article by Myles PS, Williams NJ, Powell J. Predicting outcome in anaesthesia: 
understanding statistical methods. Anesthesia and Intensive Care. 1994; 22:447-53. ) 
 
 

200

SBP

100

Day 1          Two weeks later

If 50 recordings had been taken on day 1, there would
be a normal distribution of results based on random
variation. His SBP has, in fact, not changed. It appears
to have fallen because extreme variations are likely to
regress towards the mean
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Corrections 
Introduction 
Distribution of Sample means plot  
Figure numbering 




