UNDERSTANDING

STATISTICS

“No amount of experimentation
can ever prove me right; a single
experiment can prove me wrong.

14

Dr Alan McLintic
Department of Anaesthesia
Middlemore Hospital
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Alan passed away suddenly but
peacefully at his home in Mission
Bay, Auckland on 22 September 2020.
This is a lasting gift to trainees ...




INTRODUCTION

When the first plane flew into the twin towers, tinéial response was that a terrible accident bedurred.
When the second plane flew in, people immediatedyised that this was not an accident but a deltbeact. No
statistical analysis was required to reach thichuion; it was an intuitive process which we exgere day in
day out. Goldfinger knew this too:

“They have a saying in Chicago, Once is happengalwice is coincidence. Three times is enemyractio

What does formal statistical analysis tell us abautevent in a trial? Usually it comes down to timeg: it

formalises the above thought process and produ€eslzability that the event could have happenedhance.
It will neverallow us to absolutelprovethat an effect was more than a chance event. \Wadlalways leave
the clichéd hyperbole of ‘clinically proven’ to ethative medicine and advertising agencies.

Statistics is never having to say you're certain

Statisticians have designed tests that at firseappbstract, but in fact are based on common sersmtuition.
For example, if we were asked if there is any d#fice in skin colour between African Americans, tSe@n
and Chinese we subconsciously perform ANOVA andldvsay ‘yes’. This is because the overall differehin

skin colour (the between groups variance) far oigiagethe confusion caused by the pallid Michaekdaw and
the bronzed Rod Stewart and Bruce Lee (the withdigs variance).

What if you see a strange person outside your howme in one week? The question arises, is thta
incidence or are they ...a stalker! You will be sufismiously comparing the current proportion of tweirdo

sightings per seven days against the normal prigmoof zero sightings per seven days. How frequeets the
new event need to be before you believe it to beertttan coincidence? This is the thought procebind the
Chi-square test.

Most other tests also have an intuitive basis « fooit and you'll understand statistical methduister.

AJM May 2008
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Two main groups of data:

Categorical (qualitative )

Binary

Nominal data

Ordinal data

Continuous numerical (quantitative)

TYPES OF DATA

Each individual patient can only belong to one ofwanber of
distinct categories.

Two categories: male /female; alive/dead

The categories have names and there is no.degeblue, brown,
green and grey eyes; blood types: O,A,B,AB.

There is an order to the categories eg carteging; severity of
pain, ASA scores, APGAR scores,

Discrete numerical data: Where the variable cary take certain
whole number values. eg pain score from 0-10. Tais may be
analysed as ‘continuous’ if the sample is largeugho Note: Age is
a continuous numerical variable but is often tréatediscreteand
may also be counted into age range groups and ddhnab
categorical.

The variable has a numerical value

Parametric and non parametric data

Parametric data is continuous numerical data frormoamal

distributed ‘population’.

Non-parametric data is all the rest but usuallgneto continuous
numerical data from a severely non-normal distidoubr when the
sample is too small to be sure what the parentiloligion was like.
(Large numbers of Ordinal data are often treateccadinuous
numerical data and are usually handled with nomspetric tests).

Interval data and ratio data A largely irrelevant sub-classification
of statistical data. Interval data increase at @origntervals but do
not start at a true zero. eg gauge pressure oretatyve on the

Celsius scale (20C is not twice as hot as T€). Ratio data is a
type of interval data in which there is a true zeeg absolute

temperature or absolute pressure (Absolute pres$u280 kPa is

twice as great as 100 kPa)
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What isdescriptive statistica

Summarizing data

Arithmetic mean

Median

Mode

Geometric mean

DESCRIPTIVE STATISTICS

Describing the data from a sample. This usuatipsists of a
summary measure accompanied by a measure of thadspf data
in the sample. A summary measure with a narrowashbré data is
indicative of a real trend in the sample. If thexex wide spread of
data one can'’t be sure that the summary measuresesgs a real
trend. Graphical displays are also part of detiggstatistics.

Often referred to as simply thiean The sum of observations
divided by the number of observations. Has mostvagice if the
data are symmetrical.

Middle of a series of observations. If the&sean even number of
observations, the median is the average of the middle
observations. The median is the same as the md¢ha data are
symmetrical but will be different if the data alewed. The median
is the summary of choice in non-parametric data

The value that occurs most frequently. Theesamthe median and
mean if the data are symmetrical.

If data are skewed to the rightttiptp the log of x against the
frequency produces a much more symmetrical digidbu The
arithmetic mean of the log values can then be &tled . The anti-
log of this mean is termed the geometric mean afic®& closer to
the median than the mean of the raw data.

<
—

Fregency

1

+—— Arithmetic mean

Median

Geometric mean

Distribution skewed to the right

 F—T—T1—

Variable (raw dat:
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Measures of variability

Measures of variability describe the average dsparof data around a mean. The most commonly used
measures of variability are the range, percentiieg)dard deviation and the standard error of thamm

Range
The smallest and largest values in a sample. Maydssl in
reporting skewed and other non-parametric datagaleith the
median Problem is that the range is too influenogautliers so
the inter-quartile range(see below) is preferred.

Percentiles

Definitions vary. The simplest is that they are ettmd of ranking
by dividing the scores or results into 100 partsug; if your score
was on the 65th percentile, 65% of scores lie beyjow. The
interquartile range is the range around the mediginin which

50% of the scores lie. It has the advantage obeatg influenced
by outliers. Another commonly used range which asatimes
referred to as the ‘normal’ range, is the 95% edniange. This
excludes the outer 2.5% of observations.

X €——— Maximum

95% :
Interquartile — :
central range (25% Median

range to 75% )

Value

;/ Minimum

Box and whisker plotPlots the median, 35and 7' percentiles and the maximum and minimum values. Th
95% central range may also appear in the B anddfé.pl

Standard deviation (SD, s or 0)

A measure of the average spreadnofividual valuesaround the
sample or population mean. The symbdd use for the SD of the
sample data and is used for population data.

Calculation of SD To calculate the SD from a samypde square the differences
between each value and the sample mean, sum them ¢f
square$ and divide this by (n-1) to give thariance The SD is
the square root of theariance
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Degrees of freedom

When is the standard deviation used ?

Standard error of the mean (SE)

Calculation of the SE

Why do we need the SE?

The term (n-1) is called tlegrees of freedor(d.f). It is the
number of totally independent observations thatpargsible in a
sample where the mean is known. It is one less tharsample
number because, if n-1 observations are totallesl Jdst one can
be deduced.

An intuitive explanation for degrees of freedormhé&d to find in
the texts. It is, however, enough to know that gigim1) gives a
better estimate of the population variance fromardata.

i) When tepsample data, the SD gives an indication at a
glance as to whether the sample mean represeeéd end in the
sample.

ii) The SD of a large, randomly selected samplelmassumed to
be close to that of the population from which itsvaaawn.

iii) The SD is used to calculate the SE

iv) Any individual data point in a normal distribom can be
described as a multiple of SD’s from the populatiogan. This is
called z transformation. This has less importanbant z
transformation of means.

v) Standardised difference. This is an effect sxpressed in
multiples of the standard deviation. It is usedsample size
calculations. See later.

An estimation of the spread ofample meansaround the
population mean. If you were to take multiple saspfrom a
normally distributed population and plot the sampieans you
would end up with a normally distributed plot ofrgzle means.
(See Figure page 9) The SE is an estimate of tleadf sample
means in thisheoreticaldistribution. But,_you do not need to take
multiple samples and plot their means to estimbé SE It is
‘guess-timated’ from the data in a singlemple.

The SE is an estimate baseth® number in the sample and the
sample SD.

SE:ED

n

Intuitively, this makes sense because the vartghilinong sample
means will be increased if there is a) a wide \alitg of
individual data and b) small samples.

i) An indication of firecisionof the sample mean as an estimate
of the population mean (See Page 10 for furthelamgpion)

ii) The SE is used in parametric tests to quankify magnitude of
an effect size. The effect size is expressed asipiad of the SE.
This is called z-transformation. ( See below)

iii) The SE is used to calculate confidence intts¢&ee below)
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DISTRIBUTIONS

An empirical frequency distribution is one in whithe observed data are plotted against their fregyue
Theoretical distributions are those which are dbsdrby a mathematical model and are used to ands.

The Normal Distribution

1 o o

1 e o o o

N v A large  sample,
Y \ randomly selected
g \ from the population,

’ \ will also have near
’ \ normaldistribution

Frequency or probability of value
arising

H

Value of observation

Figure 1. The normal distribution curve

Features of a normal distribution

1. An observation that is normally distributed wittanpopulation has aorm and randonindependenfactors
have caused variation on that norm. Most valuestetuaround the norm with fewer and fewer valuestds
the tails. Extreme valuao exist though.

2. It can be completely described by its mean and SD.

3. Because the variation is random, there is equalkshof values above and below the norm. The avemge
(mean) is the same as the central value (mediah)renmost common value (mode).

4. A normal distribution (Gaussian) curve can be plbtto illustrate thérequencyof observations within the
population or theprobability of an observation arising in the population. Theve is bell shaped,
symmetrical andheoreticallyof infinite size with tails that never reach thexs.

5. A large (n > 100) randomly selected sample fromoemally distributed population would also have near
normal distribution.

6. The mean and standard deviation of such a samfileig to be close to the mean and standard deviatf
the population from which it was sampled.

OAJIM August 2009 9



7. The smaller the sample the less likely it will hamermal’ geometry and the less likely that the mead
standard deviation will match those of the popalati

8. If multiple large samples were to be randomly gel@édrom a normally distributed population the pibthe
sample means would also have normal distribution.

The normal distribution that |
would arise if you took \
multiple random samples k
from a population and plotted
their means. Only three

samples illustrated.

Frequency or probability of value
arising

PRS

x

S S S N N S N N
mmfr o o o o o <
x

(o o

H

xl e o o o o o o o o

A

Theoretical distribution of

sample means

Figure 2. The theoretical distribution of sampleans

Precision and the standard error

Is my sample from a normal distribution ?

Suppose you expehe above exercise with huge samples
of, say, 1000 patients each. Clearly, in this situma the
sample means would be close estimations of the latipuo
mean and so a plot of the means of multiple samptadd
have a very tight distribution. The SE of this dimition would
thus be small.

Now suppose you repeated the exercise with smalples of
10 patients each. In this situation the sample sezay not be
close estimations of the population mean and tlet pf
multiple sample means would be much more spreadidhe
SE of this distribution would be large. Thus, thE B an
indication of theprecisionof a sample mean as an estimation
of the population mean.

- Plat thata and superimpose a normal distribution viiéh t
same mean and SD. ‘Eye-ball’ the fit.
- Normal Plot. This is a plot of the ordered sampédues
against what you would expect from a Normal distfiiin of
the same size. Eye-ball the fit — it should beraigit line.
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The Standard Normal Distribution

z transformation

- Goodness of fit calculation. Computer algorithrill \give
you the likelihood that your data is normally distited. Not
thought to be superior to the subjective methodwab

z transformation is where theedéhce between an observation and
its population mean, or a sample mean and its ptipal mean is
converted to a multiple of, respectively, SD’s &'sS The resulting
multiples are called z points, z values or standarminal deviates.

2=X"H o =XH
SC SE

Standard normal distribution / z distribution

Percentage points

SND and sample means

If the data ofany normal distribution were to be converted to z
values, a standard curve with fixed, known propodiarises. This
is called the standard normal distribution curvBIDE). By simple
arithmetic, you will see that the SNDC always hasiean of zero
and a SD of one.

The SNDC is a theoretical distribution of infing&ze and the area
under the curve (AUC) contains all possible charargations of the
population mean. The probability of any variablewtcing within
the total AUC is, therefore, 1. In fact, because firobability
densities of all the proportions of the SND arewngit can be used
to determine the probability odiny z value occurring through a
chance variation of the population mean . (Fig & @n

Example: if your analysis results in a z value @&6land look this
up in z tables, you will find that 0.025 will appeagainst this z
value. This means that the proportion of the SND& w values
greater than 1.96 is 2.5%. This is the fundamemiakiple behind
parametric testing.

z values are also referred to as percentage padintedSND. The
most important are the 5 % percentage poirts ds) which are +
1.96. These values exactly encompass 95% of the SND

The plot of the means of famiténnumber of samples is also
normally distributed and has SND geometry when riieans are
expressed ag values. Here, however, z values are multiples of
standard errorsfrom the population mean. Thus the SND can be
used to describe the probability of any sample mm@sing as a
random variation of the population mean. It is magbre common
for us to be using this sort of z value, as medieagarch is usually
interested in comparing sample means rather trdividual values.
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Y Distribution Curve as applied to

I Figure 3 The Standard Normal
LN individual values .

1
1
1 h
| "

68.3% of all values lie
1 within £ 1 SD fromu

L ' | \
! | \

' . \

1 \
A 95% of all values lie within =
;o 1.96 SD fromu AR
/ ! & 1 L 1 » : \
’ | ) T | Ll \
L | \ ] | [} N
- ! , 1 | ! S
”,’ : | 1 \ 1 Seo
- -~ ' | : | : Ss-oL
-3 -2 -1 0 1 2 3

Standard deviations fropn

Figure 4. The Standard Normal
Distribution as applied to the
theoretical distribution of sample
means

, \ 68.3% of all sample means
, \ lie within + 1 SE fromu

95% of all sample means lie
within £ 1.96 SE fromu

3 2 -1 01 2 3
Standard errors from
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The t-distribution

Derived by W.S Gossett under the pseudo®yadentProbability
density distribution for parametric data but fomgdes that are too
small to use in the z distribution. For the latyeu require large
samples with nearnormal geometry. The t-distribution is
consulted according to the degrees of freedom (oflyour
sample. As the sample size gets bigger you wildl fthat the
parameters of the t-distribution become closerhiosé of the
SND. (See later under t-test)

The Chi-squared distribution
The chi-squared distribution is derived from the rmal
distribution (and therefore continuous numericaltajlaand
describes the distribution of the variance of samghken from
the ND. The shape of the distribution depends endigrees of
freedom. As the degrees of freedom become gredier t
distribution becomes more Normalised.

Skewed distributions and data transformations

If a variable has a distribution that is skewed the right

(positively skewed), the data may be transformedttsd the

distribution becomes more ‘Normal’, thus allowingrametric

tests to be used. The transformation of choice ligrto plot

frequency against the log of x. Parametric testsraade on the
transformed data and conclusions made. (Eg the fogaof X is

significantly different from the mean log Y). Summaneasures
are often back-transformed (antilog), for exampleptoduce the
geometric mean.

Binomial distribution

Describes the probability of different proportion$ a binary
outcome arising in a fixed number of observations.

Example A binomial distribution might be used teplay the probabilities
of different proportions of heads arising duringssef coin tosses
or the chances of turning up a disease of knowidémce in a
sample of specified size.

0.2 n =20 tosses
n=>5 tosses

04
2 s
® ' 2
g =
S g 0.1
2 02 S
2 a
] o1 ‘
o
: AEEEN Al I

0.0 0 1 2 3 4 5 0 5 10 15 20

Number of heads Number of heads

Figure5. Two binomial distributions. The first diags the probabilities of all possible proportioofsheads arising in
five tosses of a coin. The second is the probgtufiall possible proportions of heads if the ciginossed 20 times
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The most likely proportiohgtnorm) in the population is called
the population proportionry. In the above example it would be
0.5 (50 % heads). In another example one thirdeafpfe have
blue eyes, so= 0.33.

As the sample size gets bigger, ibrhes more likely that the
proportion of a particular observation within themgple will be
the same or similar to that of the population prtipa (7). Thus,
if you were to toss a coin only four times you wbhlave a good
chance of turning up a proportion of heads far nesdofrom 0.5.
If you were to toss a coin 1,000 times it is likéhat the resulting
proportion of heads would be very close to 0.5.

The larger the sample, the cltise binomial distribution is to a
normal distribution. This is the case, evenmifis not 0.5. See
below. This fits in with the statements above iatttwith large
samples, finding results far from the norm is rare.
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Figure 7. Examples of the way the binomial disttifyu changes with sample size. (Reproduced frakwdiod
BR, The essentials of medical statistics, Blackw®adntific Publications 1988)

Total probability

The binomial formula

Total of all outcomes must be 1.0

The probability of a specifioportion arising in a sample is not
eye-balled from the above graphs but calculatechgughe
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Hypothesis tests

Example of the application

Poisson distribution

Example

binomial formula. The input into this formula isetlproportion
you are seeking, the population proportion andsdmaple number.
(See appendix)

As the binomial distribution cam dpproximated to a normal
distribution, hypothesis tests such as tilmmal approximation
testcan be carried out to determine, for instanceptoéability of
a particular proportion or greater arising in adoial distribution.

If vomiting is known txcur after general anaesthesia in 0.3
cases 1t = 0.3) and a study of TIVA in 100 patients resuits
vomiting in only 0.2 cases, is the difference inogmrtions
significant or is 0.2 simply a random variation0o8?

Describes probability of a number of events ocogriin a fixed
time period or in a region of space. The eventsuocandomly
and independent of each other at some averag@uate

The probability is calculated from an exponentiafnfula and
depends on prior knowledge of one parameter omlg, rhean
number of occurrences per unit time period (or wedgion of
space). See appendix for formula.

If the number of adverse incidents in tfeeatver a two year

period is known, what is the probability of moreuth5 incidents
in one day?
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What is an hypothesis test?

HYPOTHESIS TESTING

A process by whichege d specific hypothesis on a set of data.
The result will be couched as a rejection or acem of the
hypothesis. Hypothesis tests may be parametrioparametric.

Principles of hypothesis testing

The null andrakitive hypotheses are defined
Data is collected
A test statistic is calculated to test the hypathes
The statistic is compared to values in a probatilistribution
A P-valueis produced which is compared with a significarce
level
The hypothesis is either accepted or rejected

Null hypothesigHg)

Alternative hypothesis (Pl

P value:

Alpha value

ComparingP with alpha

The standpoint that that an effect found experialgnts simply a
chance event. For example, in a comparison offfeete of Drug A
with Drug B, the Null Hypothesis would be that thés no real
difference between the drugs and that any differedetected is
simply due to chance. An hypothesis test is themiezh out to
determine the likelihood of A and B being simplypdam variations
of each other. On the basis of this, the Null Higpsis is either
accepted or rejected.

An alternative hypothesis that holds by defauhé null hypothesis
is not true. For example, if the Null hypothesighiatDrug A does
not alter blood pressurethe Alternative Hypothesis will be that
Drug A does alter blood pressurdote that, by using the teratter
rather than specifyingaise or lower, the H is a two-tailed
Alternative Hypothesis. This is the most commdnation because
we cannot usually state beforehand that Drug At (id an effect)
could only move the blood pressure in one spedifiection.

The probability that an effect could have occurpgdchance alone
if the Null Hypothesis is true ThE value is calculated from your
study results and is the proportion of the SNDCclhis more
extreme than the z valuB.is then compared with the pre-sdépha
and the K accepted or rejected\B: It is not correct to say that the
P value is the probability that the Hs true. The H, is either
accepted or rejected.

The alpha value is te@nificance levelnd is the limit at which
your P value will be deemed too large for a difference b®
regarded as statistically significant. Alpha is Isgtthe investigators
at the study design stage. In medical researclpdia @alue of 0.05
is usually selected.

Supposing you are comparing two meanand B. At the design
stage you have set alpha at 0.05 and your calcuRatealue later
turns out to be 0.045. The latter means that, §fis¢dtrue and
differences between A and B are merely due to ahahe detected
difference could occur 4.5 % of the time. Becausa have set
alpha at 0.05, you may claim the difference as issilly
significant. and reject the null hypothesis. Tosvnside is that you
have a 4.5 % chance that your statement is afalsigve one.
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Type 1 Error (Alpha error): Frequency where we eeausly conclude there is a difference
when there isn't one. False positive frequency. agnitude of
the potential alpha error is determined by the alpdiue selected.

Type Il Error (Beta error) Frequency where we are unable to detect a differamen there is

one

. False negative frequency. One common caus®sof using

a sample size which is too small. (see later)

Limitations of hypothesis testing

The selection of 0.05 as the significance levekisy common,
but is totally arbitrary and does not usually havelinical
basis.

A statistically significant difference does not assarily imply
a clinically significant difference.

The greater the alpha value, the greater the tikeli of more
false positive error (alpha or type 1 error)

If a ‘significant’ result is presented &< 0.05, rather than by
giving the exacP value, the reader is prevented from drawing
their own conclusions about the degree of signifiea For
example, you wouldn’'t know iP had been 0.0001 (highly
significant) or 0.047 (barely significant).

P value
100% probability of the L
effect occurring by chance 1.00 Not significant
Can't reject kg ’
T
Not significant
0.02
1
Convention: Arbitrary cut off. Alpha R 0.06
set at 0.05. 0.04
0.01
T
Signjficant
9 0.001
1
0% probability of the effect o
occurring by chance. RejectH 0.000 Significan

Interpretation of

significance and non-significance

P values: The continuum between
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PARAMETRIC TESTS

Basis of parametric tests: Parametric tests ats that are based on the parameters of the
normal distribution. They determine the likelihottét a difference
has occurred by chance variation rather than beoafus real effect.

What assumptions are made? The dateoiginuous anchumerical (Large numbers of discrete
data may also be treated as parametric.)
The samples havemilar varianceand are takerandomlyfrom a
normally distributed population.

Normal test (z test) : One sample/Unpaired

Definition A parametric test for very large sampl@sxts vary as to the
minimum size but rarely used when n < 1@0)in the unusual
situation where we know the population variancee Tme sample z
test determines the likelihood that the mean afrgd sample X ) is
simply a random variation of a specified numher (

Basic principle A standpoint is adopted thal 6 the mean of a normal distribution
and my sample is part of this distribution. Any rarioal difference
betweenX andp has, thus, simply occurred by random variation.
If this is true, the SD of the large sample willthe same as that of
the proposed ‘parent’ distribution. The sample 3D thus be used
to calculate the SE of this proposed parent digfish and to
convert Xto a z value on it. Z tables are then consulted to
determine the probability of finding a value mortreme tharX in
this distribution.

Step by step example

Question The average height of normal UK 4 yr agishis 102 cm.( = 102
cm) Does the height of a sample of 100 immigragt dlds differ
from this number?

Results n =100, sample meax)= 99, SD of sample = 9.8

Null hypothesis There is no real difference betwt#enmean of 102 and the height
of immigrant boys. In other words, 99 is just adam variation of
102.

Alternative hypothesis The average height of UK @mchigrant 4 yr olds idifferent.

(This has to be a two tailed;ts we have no reason to suppose
beforehand that the test results couoldy vary in one direction
from 102 cm)

First assumption Assume that 102 is the mean obranal distribution of heights
(Distribution A) and that our sample is part ofttdastribution.

Second assumption (8) Assume that, as the sampdegis, the SD of the sample is
approximately the same as that of Distribution AeTSDturned
out to be 9.8cm.

(b) From the data in your sample, you can estirttateSE of the

theoretical distribution that would occur if youoto multiple
sample means from Distribution A.
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Z transformation

Consult z tables

Conclusion

One tail vs two tailed tests

SE:& =098

~100

Thus, the Null Hypothesis is proposing our sampleam (99)
belongs to a theoretical distribution of sample nseaith mean
102 and SE 0.98.

The difference between 99)(and 102 is then estimated in terms
of SE’s. (See figure 5)

,.99-102_
0.98

—-306

z tables are consulted to deterriie proportion of the normal
distribution that lies below a z value of -3.06.heTanswer is
0.00111.

As we didn’'t know at the start of the study whichywif any, the
sample mean would vary from 102, we must doubledth8111 to
0.00222. (See two tailed tests below)

If the Hwas true, there is a 0.2 % chance that the samgéan of
99 could be a random variation of 102. P = 0.00®tthrer words
there is a strong likelihood that the immigrant twave a different
height from the UK norm of 102. There is a 0.2 %rute that this
statement is false positive.

If the significance level was set at 0.05, the &msult would be
regarded as highly significant.

As already stated,efiact will be regarded as significant if the
probability that that an effect of thatagnitudecould have occurred
through chance alon®) was less than 5%. Thus, if you have only
been able to state a two-sided alternative hypisthitgs probability
is made up of the proportion in SNDC distal to ytast z value plus
the proportion that is distal to the equivalengire in the other tail.
This is atwo—tailed testind is the usual test, given thatisirarely
able to state beforehand that an effect could adgur in one
particular direction.

If you know beforehand that A coulohly vary in one direction
compared with B (eg A could only be greater thantB3P value is
simply the proportion of the SND@reater than the test z value.
This approach is calledane-tailed test
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to the

The Standard Normal Distributio
applied theoreticql
distribution of sample means. Both

as

Shaded area: 0.00111
sample means lie distal to

a z value of 3.06

tails illustrated.

2 3

I
Z:-3.06/3 2 1 0 1
Standard errors from

Normal test (z test): Two samples

Definition

Basic principle

Step by step example

Basic trial design

Null hypothesis
Alternative hypothesis

Results

First assumption

A parametric test to compare the meditsvo very large samples or
in the unusual situation where we know the popaifatiariance.

The null hypothesis that there gsdifference between the sample
means is tested by determining the likelihood that difference

between the means could be found in a normal bligtan around a

mean of zero.
Are the post-operative morphine requirements offité&ue A and

B different?
Post operative morphine requirements noted for each

There is no difference in morphheguirements. Any numerical

70 patients given technique A 80 patients given technique B.
difference is due to random variation alone.

The morphine requirementd ahd B are different
Group A (n = 70); mean morphine requirerd® mg, SD 1.4
Group B (n = 80); mean morphine requirement 11.5%iy1.3
Mean difference in Morphine requirementX ) = 0.9 mg

Imagine the situation in whicle tiechniques werexactly the

same. Thedifference in post-operative morphine requirement
(A X) would most likely be 0 mg or close. If that triehs repeated

over and over and X plotted each time, a normal distribution
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Second assumption

Z transformation

Consult z tables

Conclusion

Student’s t-test

Definition

Basic principles

One-sample t-test

Basic calculation of-statistic

Two-sample or unpaired t-test

would occur around a mean of zero. Call it DisttitmuA. The null
hypothesis is that the mean difference betweentwarsamples
(0.9 mg) is part of this distribution

Because 0.9 mg is assumed to fomeDistributionA, and the
samples were large and randomly selected, the Shurosamples
can be used to estimate the SE of Distributioithe calculation of
the SE for a two sample test is not as simple &rderequires a
combining of the SD’s, and is found in the appendix

The difference between 10.6 ané islthen estimated in terms of
SE’s by dividing the difference by the SE.

SE= 0222 z=1067115_-09__, 5
022 0227

z tables are consulted to deterrifie proportion of the normal
distribution that lies below a z value of - 4.05%he most extreme
z value listed is 3.29 which corresponds to a taited P value of
less than 0.001.

Statistically, this is a highly signditt difference. If the His true,
there is less than 0.1% chance that it could odyurandom
variation alone. The {s rejected at the 0.05 level

The t-test is a parametric test for the means of samphésh are
from a normally distributed population, but whiate doo small for
the Normal test.

The calculation of the test statiss very similar to those of the
Normal Test although the statistic is callestatistic rather than a
z-value. However, because the samples are smalttaweao longer
assume that the sample SD is the same as thas gbpulation
because, as noted before, the SD becomes lardlee sample size
becomes smaller. We cannot, therefore, use the apilitly
densities of the SND. Instead we take the t-siatisd t-
distributions. These have been adjusted to takeplgasize into
account, becoming flatter and flatter as sample decreases. The
statistic must be used with thedistribution appropriate to the
sample’s degrees of freedom. Theistribution becomes nearly
Normal when n > 60 and negligibly different wher 200

Determines the likelihood of a sample mean beiffgrént from a
specified number

1= X"H
SE

Determines the likelihood of the means of two peledent samples
being different.
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Basic calculation of-statistic

Paired t-test

Basic calculation of-statistic

t_ Xl_XZ

SEdifferencebetweermeans

(seeappendixfor calculation of SE)

Determines the likelihood of two sample means daiifferent
where the samples are the same individuals in er&eind-after an
intervention.

In a before-and-after intervention on the same exiibjthere is
likely to be less intrinsic variability within theamples. This means
that a small difference in means is more obvioud waiill have
greater significance. (An electrical analogy ist tiiere is a greater
signal to noise ratio) The calculation of the paitestatistic takes
this into consideration and results in a more péweest. Thus, a
false negative result is less likely than if anaingd test is used.
Another instance where a paired test is indicasedhen there are
two groups of different patients but they have beeiched with
each other

X difference beforeand after treatment

S Ediﬁerencs beforeand after treatment
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CONFIDENCE INTERVALS

Definition (parametric tests) The 95% confidence interval (Cl) in a parametrist is the range
around the sample mean within which you predicthw@5%
certainty, that the true value (the population mdias.

More general definition Cl = Estimate + a multiptd SE where multiple depends on
assumed distribution and level of confidence

How is it calculated? In the SNDC, 95 % of sampleans should lie between 1.96 SE
above and 1.96 SE below the population mean. livi@l, therefore,
that there is a 95 % probability that the populatioean lies within
+ 1.96 SE of any large sample mean that has beeomadn selected
from that populationThink about those two statements carefully
and understand why, if the first is true, the setomust also be true.
This is called the 95 % CI for the population mean.

Cl =X +(zy,, x SE)

The above refers to a SNDC which has a gz of 1.96(see
percentage points)if the t-test is being used, the 5 % percentage
points vary, depending on the degrees of freedamnekample dos
with 19 degrees of freedom is 2.09 apdstwith 9 degrees of
freedom is 2.26.

Cl = X #(t 05 X SE)

What are the usual causes of wide ClI's? Small seenpl
Large variance within samples

What information does the CI give you?

Descriptive The CI gives an indication of the psémi of the sample mean as an
estimate of the population mean. The wider theidente interval,
the greater the imprecision and the greater therpiel difference
between the sample mean and its population mean.

Inferential Generally speaking, hypothesis testedpce a ‘reject’ or ‘accept’
answer devoid of any indication of statistical #igance.
Examination of theP value itself is necessary to provide this
information.

Confidence intervals allow more scope for readefg@gment on
significance. The alternative to the hypothes#& te to examine
whether a population mean of interest falls witthie 95% CI of
your sample. If not, it is a 95 % probability thyaiur sample is from
a different population. In addition, a reader nagk within a CI for
a clinically significant value of their own choogin Similarly,

sample means with overlapping Cl's cannot be rezghess different,
and graphical presentation of several means with &low instant
visual comparisons to be made. See Forest plotsnata-analysis.

Specific applications
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Odds ratios. OR’s are frequently presented with confidence
intervals. An OR of 1.0 suggests no risk associaugih the
exposure. If an OR is presented with a CI that &asinge that
includes the number 1.0, then that OR cannot bardegl as
significant. For example an OR of 2.1 (0.6 — 3.6uld not be
regarded as significantly different from 1.0.

Forest plots (see laterfsraphical representation of the trials
included in a metaanalysis. The results of eaeth &rie plotted with
their confidence intervals. Allows easy comparisaf the
significance of each trial.

The pooled OR in a meta-analysis is often preseased diamond,
the width of which is the confidence interval oétpooled OR. If
the width encroaches on a line marked at 1.0 onxthgis, the
pooled OR cannot be regarded as significantly wiffefor 1.0.
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PARAMETRIC TESTS FOR MULTIPLE SAMPLES

Analysis of variance (ANOVA)

Definition Determines whether there is a differeramaong three or more
samples by comparing the variability between theugs (which
should be large if there is a difference) with Hagiability within
the groups (which should be as small as possible).

ANOVA does not, however, tell youhich of the samples is
different.

Types of ANOVA One way ANOVA: Comparing one obsaiun in three or more
groups
Multiple ANOVA: Comparing more than one observatiarthree
or more groups
Repeated measures ANOVA: Comparing one variabtedrsame
group at different times

Intuitive explanation of ANOVA

Post operative morphine requirements are compdted taree different anaesthetic techniques (A,nd8 &).

The morphine requirements of the three sampleplateed below with their respective means. It banseen
that, in each of the samples, the values clusgitlyi around the mean. This implies that there eal trend
within each sample and, therefore, that the medikely to be a close representation of the trfeatfof each
technique. Therefore, as the mean morphine reqeinenf Technique C is larger than the other twis likely

that Technique C has a real difference from theerotivo. In ANOVA terminology, thebetweengroups
variability is large but thavithin groups variability is small.

How certain would you be though, if the resultsked like those in the second figure? The meansh@same
as before, with Technique C seemingly resulting ilarger morphine requirement. However, there isrend

within that sample. The results are spread outve@dtan no longer say with any confidence that Hrapde
mean represents a ‘true effect’ (ie the effect Watld occur if you used technique C on the whapysation)

In ANOVA terminology, although thbetweengroups variability is still large, theithin groups variability is
also large and a difference is not so certain.

Technique A Technique B Technique C
L]
L] L] LN ]
L] L] L X ]
e o o0 L] .. e o
e o 0 0 0 e o o0 o e o0 o o
® 0 0 000 0 o L] e 00 00 o o ® 0 0 0 00 o o
I I I
10 mg 10 mg 15 mg

Mean morphine requirements

Technique A Technique B Technique €
I I I
10 mg 10 mg 15 mg

Mean morphine requirements

Figure 8. Uncertainty caused by the increase imiwigroups variance in C

OAJM August 2009 25



Calculation

Do you knowwnhich group is different?

T-tests with Bonferroni's correction

Definition

Problem

Bonferroni’s correction factor

The test statistic is a ratio called This is the ratio of the
variances:

= BetweengroupsMS
Within groupsMS

The larger the- statistic is above 1, the more likely there is a
difference between the groups. TRestatistic is then located in
the F distribution tables at the appropriate degreedregdom.
This produces & value which is the probability th&t could have
occurred by chance if thegHno difference between the groups)
was true. As before, the smaller this probabilityy more likely it

is that a real difference exists.

Small print: Simplistically, the between groups meguare is the
mean square of the difference between the indiVidample
means and the grand mean. The within groups meaarsgs
obtained by summing the individual SS for each $anapd
averaging the result.

No. ANOVA tells you that ore different but not which one is
different. Post hoctests must be carried out to determine this.
Examples include t-testing with Bonferroni’s cottien, Scheffé,
Neuman-Keuls, Tukey’s Honestly Significantly Diféerce (HSD),
and Dunnett’s test.

Correction factor which allows #test to be used to make
comparisons between three or more samples.

Normally a-test should only be used for one comparison eg the
means of two samples.

If there arethree samples and you wish to determine if any one
sample is different from the other two, you muskethreeseparate
comparisons. The problem is that, if alpha is 0®&ry time you
make a comparison, you are risking up to 5 % Typerrbr.
Therefore, by the time you have come to your caicluabout the
three samples, there is potentially a 15 % riskygfe | error.

To compensate far #bove, instead of looking up the critical value
for t at thea = 0.05 level, you must look up the critical vafoet at
a = 0.05 / number of planned comparisons.
Therefore, for three comparisons, the critical galar t would be
looked up ata = 0.0167 and for four patients (six separate
comparisonsy = 0.0083. In other words, your test value would
have to lie in the outer 0.00415 of the t-distribatto be considered
‘significantly’ different.
As the number of comparisons increases it will gatder and
harder to demonstrate a difference between the leamphis is,
therefore, a less powerful method than ANQVA
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NON-PARAMETRIC TESTS

When are non-parametric tests appropriate? Disioibwf data is severely non-normal

Characteristics of non-parametric tests

Assumptions

Wilcoxon rank sum test

Basic principle

Mann - Whitney U Test

Basic principle

Wilcoxon paired-sample test

Kruskal-Wallis

Friedman's test

Spearman’s rank order

Ordinal or discrete quantitative data
Small samples

Based nking
Results are reported with timedianand rangerather than mean
and SD
Less powerful than parametric tests. Type Il emore common

Samples are randomly selected
Observations are independent

Non-parametric equivalent to the unpaiteds

The two samples are combined, @di@end ranked from lowest to
highest. The samples are then separated againthendanks
summed in each. The next step is to determineh&hé¢here is a
significant difference between the sums of the groups. In the
Wilcoxon rank sum test, tables list different sagnpizes against
rank sum ranges. If the smaller of your rank sues dutside the
relevant range, a difference is significant.

Non-parametric equivalent to the unpaitedst

Rank all patients from smallestueato largest value and sum the
rankings in each sample. The statistic is then calculated to
assess the likelihood of a difference between émk sums. The
equation is complicated and involves the sample sizd rank
sum. The U statistic is then locateddmprobability tables.
Non-parametric equivalent to the pairets
Non-parametric equivalent of one-way ANOVA. Givéeelihood
of a difference among the groups but mdtich one is different.

This can be determined later using a Mann-Whitdegst

Equivalent of repeated-measures ANOVA. Again based
ranking.

Non-parametric equivalent of Pearson correlatiogfficient
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LINEAR REGRESSION AND CORRELATION

Purpose Used to compare the relationship betweertdntinuous variables
where the relationship appears to be linear. egdblaressure and
blood loss.

Linear regression: The drawing of a line that best describes / predice relationship

between two variables

Correlation: The assessment of the closeness of associationed®etuwo
continuous variables.

Linear regression

Assumptions: -The relationshiplisear
-Observations are independent of each other. Maltipservations
from the same patient or repeated measures over & not
permitted.
-One variable must be an explanatory or independsiable and
the other is the response or dependent variabt#. to\be used for
comparing two dependent values such as two megstgitniques.
-For each value of x there is, potentially, a Ndrastribution of
observed values of y

Process The data are fed into a computer. Expanatariables (from
which observations are to be made) are plottedhernxtaxis and the
dependent (outcome of interest) variables are gdlacethe y axis.
The computer draws the best-fit line through thmgsdoy choosing
a course which minimises the sum of the squareticatdistances
between the individual points;fyand their imaginary equivalents
(Y) on the line. This is calleléast squares fiand the plot ofy at

x is called theegression of y on x.

9 The computer then calculates the equation
which describes the line and the proposed
relationship:

y =a + b.x

° ° Where:
y  predicted points on regression line
b slope of line; defines the proposed

relationshipregression coefficient
a Intercept of y axis when x = 0

Figure 9. The regression of y on x

Values forb b>0 Positive relationship
b<O0 Negative relationship
b=0  Aline of no slope, therefore, no relatiopshi

How precise i9? The larger the sample the clobewill be to the true effect in the

population. The precision can be gauged by remphtiwith SE and
Cl.
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Couldb be a random variation of zero? The likelihoodhi$ tan be determined from the ClI, which should
not include zero, or by comparitgwith 0 in a one sample test.

Example Heights (cm) of children (independent uadaare plotted against
their anatomical dead-space (ml) (dependent vajabldetermine
whether there is a relationship. (ref.eBMJ) Resgltiegression
equation:
y=-82.4 +1.033 x
Thus, if height was 110 cm, the anatomical deadspanuld be:
y=-82.4 +(1.033 x 110) = 31.2 ml

What influences the variation of y? 1.1f y did matry at all with x, y would be a horizontal linetae
mean of y.
2.If y varies linearly with x, there is a slopette line. If a perfect
fit, the variation is said to be entirely due te tegression.
3. Random effects mean that the measured value ofyynoaibe
exactly on the predicted line ie thereResidualscatter
4.Non-random effects may also influence the scattgr about the
line. For example, as x increases the scatterroigit increase or
decrease. If this is the case we need to transftata or use a
different test.

Coefficient of determination (R Allows us to subjectively assess the goodned# of the line to the
data points by calculating the proportion of thestwariation that is
explained by the regression. For a regressionttirieave a good fit
most of the variation of y will be due to 2 andlditdue to 3.

R? is the ratio of the variation explained by the resgion
(regression sum of squares) to the total varigbliégression SS +
residual SS). Thus, for example, if there was dggefit of the line
to the points, the residual SS would be 0 givindraequal to 1.0

R2 = RegressiosS
TotalSS
In the above example®Rvas 0.716. This means that 72 % of the

variation between children, in the size of the amatal dead-space,
is accounted for by the height of the child.

Most of the variation of y is caused by the regstine. Lots of variation of y caused by resiliseatter.
Good fit of line to data points.’migh Fit of line less good.’Rmaller.
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Pearson correlation coefficient (r)

Values ofr

Calculation

Significance test for

Spearman's rank correlation (r )

Basic method

Key Points

Correlation is the assessment of hlikely is the proposed linear
relationship.

1.00r-1.0 Perfect correlation
0 No association at all

0.2-04 Mild association
0.4-0.7 Moderate association
0.7-1.0 Strong association

First, if you haven't already confirmédearity by regression, do a
scatter plot to check that the relationship is dmeComputer
software will calculate r but the equation is.

> (x=x)y-y)
)2 (=% (y-v)

Note: This is mathematically equivalent to the squeoot of the
coefficient of determination @ In other words7= R

[ = /Regressioﬁs
TotalSS

A t-test is used to test whetheis significantly different from zero.

In the above example the correlation co-efficiamhéd out to be
0.846 which suggests a strong association.

A non-parametric equivalent for Pearson’s corretatcoefficient.
Used when the sample size is small (< 10 patientbgre the
variables are not Normally distirbuted or where eaeiable tends
to increase in some fashion with respect to another not
necessarily linearly.

The variables are ranked separatdilg. differences between the
pairs of ranks for each patient is calculated, sggiaand summed.
The sum is used in Spearman’s rank correlation temugsee
appendix) to givesiwhich is interpreted in the same way as r.

» Correlation is the assessment of the closenesgeattationship between two continuous variables.
« If the relation is linear, the test used is therBea correlation coefficient (r)

* The closerristo 1, the more likely there is latienship

« Linear regression is the drawing of the line thastbdescribes the relationship between two linearly

related variables.

* The equation of the line takes the form of y = laxtwhere b, the regression coefficient, is the slop
the line and describes the proposed relationship
«  The goodness of fit of the line to the data poisitgiven by B
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Multivariate analysis
Definition

Multivariate methods
Multiple linear regression

MULTIVARIATE ANALYSIS

While univariate methods such as t-testrelative risk assess the
relationship between an outcome and a single pi@di@ariable,
multivariate methods must be used to assess tlaiomrship
between multiple variables and an outcome. Somenpbes of
multivariate methods are listed in Table.

Characteristic Risk score

Outcome on a numeriaale but| Regression coefficient

Logistic regression

binary confounders such as
smoking and sex can factored in
Outcome on a binary scale dritegression coefficient
Odds ratio

Probability of an outcome

Mantel-HaenszeX’test

Assesses relative influence |0DR
several groups of categorical data

on an

logistic regression

outcome. Similar in use fo

Proportional hazards

Outcome time to event eg death Hazard score

Discriminant analysis

More than two outcome categgor

Multiple linear regression
Definition

Example of a problem

Basic principle

Binary confounders

Logistic regression

Definition

A method used to assess the impact ok variables on an
outcome which has a numerical scale. In other woafter one
variable x has been shown to influence y, would another béia
X, further influence y?

Is there a relationship betwbith weight and the dependent
variables of maternal height and period of gest&iBirth weight
can be shown in separate analysis to be lineadyee to maternal
height and gestation, but is gestation still impottwhen the
height of the mother is taken into account (an@ viersa)?

The basic principle is to carry agparate regressions on the
variables and add them one by one (largest finst) hext largest
etc) in the multiple regression equation below.ti#¢ same time,
ANOVA and correlation analysis determine whether #udition
of each successive variable improves the predicifaan outcome
or whether it increases the residual scatter toomtpof no
significance.

y=a+bx +b,X,....

Binary confounders such as sngpiind sex can be factored into
the equation

Regression analysis where the outcome ibinary categorical
variable such as death. Often used in attemptingdemtify

important factors in the production of an advers&come. If the
predictive variables are binary as well, their tielaship with the
outcome can be expressed as an odds ratio (OR).

OAJM August 2009 31



AGREEMENT

The Bland-Altman plot

Why not use regression and correlation to
assess agreement between measurement

What is the Bland - Altman plot?

If #mults of one measuring technique differ consistdram
anothepbgtant amount, the correlation will appear stroug
techniques? in fact, the agreemerasr.

The Bland - Altmianethod is to plot the differences between each

set of measurements against the mean of each satafurements.
If there is close agreement, a line around zerd lvél formed. If

there is a consistent difference between the meawnts, the plot
will form a line above or below zero.

The graph on the right illustrates the plot of

Haemoglobin levels

) 190
haemoglobin measurements by a laboratory 180 |
technique against those made using a theatte 170 |
‘HemoCue’ device. The plot is a straight © 160
forward linear regression and shows that Q 150
there is close correlation between the £ 140 -
techniques...but is there agreement? T 130
120 -
110 -
100 ‘ ; ‘ ;

. : . 100 120 140 160 180 200
Figures 12 a and b. Comparison of a linear _
regression model and the Bland - Altman Laboratory analysis
plot.

Bland - Altman plot
20
15 Upper limit of agreement (1.96 x
_________________________________ _ precision)
o 10 1 -
[ L 4
- 5 - o * bed Bias (one overestimates the other
[} ¥ ¥ ¢ £ 4 by ~ 4
§ o - - . <
g 5 T T T T - Lowgr_limit of agreement (1.96 x
T precision)
-10
-15
100 120 140 160 180 200

Average of two measures
Lab + HemoCue / 2

The Bland - Altman plot shows that there is a faitbnsistent difference between the two techniquéth
HemoCue values being about four units greater thdnresults. This graphically illustrates that aligh
correlation maybe stronggreemenis not. If agreement were ‘strong’ the mean valwesld follow a line of

zero difference.
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What is Bias and Precision ?

The Kappa statistic
Definition

Example

Basic principle

The kappa statistic

The mean differencevdmn the measures is called the lrad
the standard deviation of the difference is callexlprecisionThe
bias tells us how well the two measures agree meigg. For
example, a bias of +1.5 suggests that one prodeeelings which
are, on average, 1.5 units greater than the other.

The precision gives us an indication of the spreftheasures in
the individual's study. If there is close agreeméetween the
measures, there will be very little spread. If éhir a large spread
there will be uncertainty in the prediction of agment or
otherwise. As with the 5 percent percentage pdimfsarametric
testing, the standard deviation can be multipligdl96 to give
the limits of agreementyithin which 95% of all values should lie.

The Kappa statistic is used to assessatyreement or reliability
between two observers who are performing a testtwhias a
categoricalvariable.

Two clinicians auscultating a group of didepatients to
determine which has aortic stenosis and which don't

A 2 x 2 contingency table is cousted with the two observers’
predictions. The actual agreement between thécigims would
seem, at first, to be easy to determine from this the Kappa
statistic adjusts the value by removing the prdporof agreement
that is expected by chance alone.

A-E
K=——

1-E
Where A is the proportion of times the observeyga and E is the
proportion of agreement expected by chance.
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See also

Arithmetical handling of proportions

Multiplicative rule

Example

Calculation

Additive rule

Example

Calculation

PROPORTIONS

Binomial distribution
Chi square
Calculation of power and sample size

What is the probability ofwo specific eventsccurring when we
know theprobability of eachoccurring separately ?

Used to calculate the probability of both of twonrelated
independentevents occurring.

What is the probability of a couple who pl@nning to have two
children, having two girls?

The probability of the first child bgim girl is 1/2. The next time
the probability of having a girl is 1/2 again butetoverall
probability that the second child is also a gith&df of this ie 1/2 x
1/2 = 1/4.

This is used when two events can occur togethetralows you to
calculate the probability of the occurrence of @meother of the
two events or both events together.

What is the probability that a randomlyest#d individual has
either angina or hypertension (HBP) or both, whHengrevalence
of angina in the population is 0.3 and the prewsdeof HBP is
0.5.

The answer is 0.65 (rather than 0.&abse some of the 0.5 with
HBP will also have angina and vice versa. See éidnglow

0.15 3.0

PrObabi”ty (angina or HBP or bOIh)Eangina+ I:)hyper‘(ension - (P anginax I:)hypertensioh

Figure. 13. Example of the multiplicative rule iroportions

% Angina 0.3
Iﬂwﬂﬂ] Hypertension 0.5
Both 0.15
065 0 Total 0.65
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CHI-SQUARE (X?)

Definition A test to assess whether there is likely to beahdiference in the
frequencyof acategoricalevent between two or more groups. The
principle is to construct aontingencytable and to compare the
observedrequencies with those which would bepectedf there
is no difference between the groups.

Assumptions The samples are randomly selected fram population,
observations are independent and expected frecasgerae not
small.

Step by step example Is there a difference inrdguency of vomiting between exposed

and non-exposed patients. (Exposure might be aatiem

1. Construct a contingency table of tieservedrequenciesQ) :-

Vomiting No vomiting Total
Exposure 8 22 30
No exposure 16 9 25
24 31 55

Observed frequencies

2. Construct a contingency table for the frequenthiat would bexpectedf the exposure made no difference to
outcome. The calculation is straightforward:

Expected frequencieg) = (column total x row total) / overall total

Vomiting No vomiting Total
Exposure 13.1 16.9 30
No exposure 10.9 141 25
24 31 55

Expected frequencies

(0O-Ef
3. For each cell calculate: T
O-E)
4. Sum all four cells to gek ? X? = z% =6.2842
5. Consult thex? distribution. The calculated value f&? is located in the? distribution tables at

the appropriate degrees of freedom. (Degrees efitn forx?2 =
product of (humber rows -1) and (number columns -1)
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In the above example there is one df and the piitityabf there
being no difference is p = 0.0122.

Further points about the? test Thex?2test is carried out on theetual numbersnot the percentages
or proportions.

The X2 test mentioned above is strictly called the Peaxsaest.

The X2 distribution is a continuous frequency distributiar
probabilities which is consulted in numerous testiser than the
above.

Sample size: The probabilities obtained froxd assumes the
distribution of probabilities is continuous. This ot the case. The
data is discrete and there are only a limited numolb@robabilities
possible for each scenario. This leads to an iserem the
possibility of Type 1 error particularly if numbease small

Fisher's exact test This is the preferred alteweato the Pearsox? testin 2 x 2
contingency tables where the sample size is irgefft. Sufficiency
is defined as:

All expected values must exceed 1
80% of expected values must exceed 5.

Fisher's exact test is a complex calculation andy reagage a
computer for several hours in a large contingenbyet

Yates continuity correction An alternative to l@ss but little used now. Theontinuity
correction is applied to reduce the overall valfix®.

N =Z[(o—E)—o.5]2

E

Other forms of Chi-square

Chi-square for larger tables Estimates if thera @ifference in the frequency of an observation ragno
several groups
Chi-square test for trend If there is a naturaleorth the groups, this test looks for an increasing

decreasing trend

Usually used for a table where there are two ragsfétty diet and non-fatt
diet) and several columns of a variable that ireesan value (eg skin fol
thickness). Does the proportion of those in they/fdiet group increase wit
increasing skinfold thickness? The above test Is &b determine whethe
such a relationship exists and is a much more folwesst than the usual ch

= 0 O

square.

McNemar’s chi-square test Used with paired datahsas the frequency of an observation in a sipgle
group of patients before and after an intervention.

Mantel-Haenszel A multivariate test which can Bedito assess the impact of confounders on

a group outcome.
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Chi-square vs risk analysis

Incidence (rate) of disease

Prevalence of disease

Cohort studies

Case-control studies

Relative risk (risk ratio)

Definition

Key points

RISK

While Chi-square assesghether there is likely to be a real
numerica difference in the frequency of an event betwesrugs,
risk analysis gives an indication of tlrength of association
between the groups. There are several ways te sk Three of
the most common are the relative risk, odds ratid aumber
needed to treat.

Quantifies the numlbaresv cases of disease that develop in a
population at risk during a specified time period

Quantifies numbeexasting (new and old) cases of disease in a
population at a given point or period in time

A study where a sample of patients. some of whareaposed to
a risk factor and some not, are followed over timedetermine
which develop the disease. Almost alwaysspectivealthough it
is possible to follow a cohort retrospectively. Thest commonly
used risk score is thelative riskalthoughodds ratiosmay also
be used

Cancer | No Cancer
Smoking a b
Non-smoking | ¢ d

A study in whichcasesare identified retrospectively as having a
disease (eg DVT) and compared withntrols without disease.
The number ofcasesand controls which had the exposure of
interest (eg OC pill) is compared. Risk analysisvith theodds
ratio.

DVT | Controls

OC pill a b

No OC pill | ¢ d

Relative risk is the ratio of théncidence of disease among
exposed to the incidence among non-exposed. Al#edcshe
incidence risk

incidenceamongexposed _ ( a+ b)
incidenceamongnon- exposed %+d

RR=

-RR is a true risk in that a RR of 3.8ans there is three times the
risk and a RR of 0.5 implies the risk has beend@hA RR of 1.0
implies no association.
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-The RR is reported with a CI. If the Cl include® the RR is not
significant.
-The RR is a common risk score in cohort studies.

Odds ratio (OR)

Definition The odds of disease is the number ofesawho have disease
divided by the number who do not have the dise@be. odds
ratio is the odds of the disease in exposed owerotlds of the
non-exposed.

_ oddsof diseasén exposed _ (%)
oddsof diseasén non- exposed %

Key points -Unlike RR, the OR does not give axact value for risk. In
general they tend to overstate the risk, being lemtian the RR
for values over 1.0 and less than RR for valueseuntO.
However, the OR is approximately the same as theMRén the
outcome is rare.

- As with RR, an OR of 1.0 implies no association

- OR is reported with a Cl. If the ClI includes 1@ OR is not
significant.

- In retrospective case-control studies, the ORtrhasused rather
than RR because there is no information on the eusnbf all
exposed and non-exposed.

A useful acronym? Backward célort
OR Ahead (ie prospective)
coNtrol RR
Exposure Disease
Number needed to treat (NNT) The number of patients who need to be treateddardo avoid one
adverse event. The NNT is the reciprocal of theohlie risk
reduction.

What advantage does this have over RR? The NNTsgheRR some relevance in terms of the magnitéide o
clinical effect. For example, if the incidence of adverse event is
only 0.6:1000 (0.06 %), a 33% reduction in risk (RFD.33) will
produce an absolute risk reduction of only 0.02 e NNT to
prevent one adverse event would be 5000. Howef/érgiadverse
event had an incidence of 6:100 (6 %), a 33 %neskiction would
produce an absolute risk reduction of 2 % and a NRNdnly 50.

Re-cap on calculation of NNT An intervention redsiceortality from 45 % to 25 %
Absolute risk reduction =20%
NNT =100/20=5

For other risk scores See appendix
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Confounding variables in case-control studies

Definition

Example

Prevention of confounding problems:

Design stage

Analysis stage

A form of bias that occurs when the degraphics of the groups
studied are different and those demographics inflae the
outcome.

In a study that aims to compare the in@desf urinary retention
between PCEA and PCA, the mean age should be e isaboth
groups as the elderly have a higher incidencetehtin than the
young. As well as age, other common confoundeisidigcgender,
BMI, coexisting medical conditions.

Large samples
Randomization
Stratum matching eg several studies with diffeeggg groups
Matched design (see appendix)

Subdivide into different age groapsg analyse each separately.
Mantel-Haenszel test. A multivariate test which dan used to
assess the impact of confounders on a group outcome
Logistic regression
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PREDICTIVE ABILITY OF TESTS

How is the quality of a test assessed? Comparentsia gold standard or assess its ability to uteal
clinical outcome

Example The value of intra-operative intra-ope&tiVST segment
depression might be assessed by comparing with @eteation of
regional wall motion abnormalities or by its alyilito predict an
adverse cardiac outcome such as myocardial indarcti

What methods are there to assess a test? Segstidtspecificity
Positive and negative predictive values
Receiver operating characteristic curve

Sensitivity The ability of a test to detect théseasethe proportion of
disease that was correctly identified; the fpositive rate.

y erate = a/a+c= 1séahegative rate
CE’]:/

Yes 0
Test +ve
- ve

Specificity The proportion oho-diseasehat was correctly identified
The true negative rate. = d/b +d =1 - falgsitive rate
(I usually think of a highly specific test as oneghwiew false
positive3

Key points Particularly important in screening sest
Not affected by the prevalence of disease
Increased sensitivity is usually at the expensgpetificity

Positive predictive value : The proportion of a test's positivesultswhich are true positives.
ala+b

Outcome /

Yes No

rest +vé_a__b D

\

Negative predictive value The proportion of a tests negative results whiehteuly negative.
d/c+d
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Key points

Receiver operating characteristic curve

What is it?

What is it used for?

How is it formed?

What would a good test look like?

Likelihood ratio
What is it?

Positive and negative predictive valted® into consideration the
prevalence frior probability) of the disease. If a disease is
common, such as ischaemic heart disease in vaspalints,
intra-operative ST segment depression is trulyljike represent
ischaemia. If ST segment depression occurred itetriispatients

it is unlikely to be a true positive. This would beflected in a
higher PPV in the vascular group than the obstejraup. The
sensitivity and specificity of the test would, hoxe remain te
same. An example of this is found in the appendix.

When recalling the differences between sensitisjtgtificity and
predictive values remember that sensitivity/speitifi looks at
diseaseand absence dofiseaseand determines how much was
picked up correctly. On the other hand, positivedgetive values
(PPV) and negative predictive values (NPV) lookts subject
from the point of view of the tests positive andyaiive results
and determines which were correct.

A plot of sensitivity against false five rate for several values of
a diagnostic test.

Used to illustrate the traffebetween sensitivity and specificity
in tests that produce results on a numerical scatker than as an
absolute positive or negative result. The ROC cearebe used to
compare different tests or to help choose the ffygaints.

Take Troponin | levels in the ghiasis of myocardial infarction,
for example. Several different Troponin plasma em@tions
would be chosen and compared against a gold sthnohar
diagnosing MI, such as echocardiographic eviderfceews and
permanent wall motion abnormality. The sensitiéhd specificity
of each chosen Troponin level would be determimetiotted.

The ideal cutqudfnt is one which picks up a lot of disease (high
sensitivity) but has very few positives (high sfiieity). One is
usually a trade off for the other.

A test that produced one false positive for eveng tpositive is
very poor and the plot would follow the diagonal.

The ideal cut-off point would, in most cases, bghhon the left
hand side of the graph and would lead to a larg€ AU

If the consequences of a false positive result wenese than those
of a false negative result the chosen cut-off pwiotild be lower
and further to the left.

The LR is a statistical tool which elegbyou to assess the actual
chances of a patient having a target disordergtse test odds) if
a test result has reached a particular level. Toulzte the post
test odds, the pre test odds (usually the prevel@fiaisease in
the population) are multiplied by the LR.
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How do you calculate the LR?

Example from Greenhalgh

The likelihood ratibaopositive test result (LR+) is sensitivity
divided by 1- specificity. The likelihood ratio @&f negative test
result (LR-) is 1- sensitivity divided by specifigi

Prevalence of iron defiyeamaemia 5%
Pre-test probability = 0.05
0 Odds of having IDA = 0.05/0.95 = 0.053
LR of IDA when Ferritin level between 18 and 45 a3
Post test odds of IDA = 0.53 x 3 =0.159
Which is equivalent to post test probability = 14%
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Figure 14. ROC curves for two tesi®st A can be seen to be a better test than B bedha ROC curve
extends much higher into the top-left part of thepdp. This means that there are results in thatgpothat have
high sensitivity (high pick-up rate) and high spiedy (few false positives). the quality of thestecan be
guantified by measuring the area under the ROCecurv
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POWER AND THE CALCULATION OF SAMPLE SIZE

The problem

An example

Power

Required input to sample calculation

Basis of calculation

It is unethical and a waste of time anwhey to embark on a study
to see if a drug is effective, if there is a sigm@nt chance of a false
negative result. The commonest cause of a falsativegresult is
that the sample size is too small. The largersémaple, the more
likely it is that the true effect of the intervemti will be
demonstrated.

We all know that coins come down, orrage, 50% heads. This is
the ‘true’ effect. But how many times would you kao toss a coin
to convince a sceptic that, on averageloésproduce 50% heads?
If you only tossed it six times, thmost likelyproportion would be
50% heads but it could quite easily be markedlfediint from that,
with even 0% or 100% being eminently possible!df, the other
hand, you tossed it one million times you would @incertainly
produce the 'true’ value of 50% heatla(very small decimal point)
with proportions markedly different from that beingimost
impossible. In research we cannot have samplesefnaillion, so
we have to compromise and s¥yhat is the smallest sample | need
to be almost certain of producing the true result?’

The Power of a study is the chance of it essfally demonstrating
the ‘true’ result. Power can also be expressechaswinus the false
negative rate or (B-error).

1) First deaidhat will be regarded as the desigdfiect size This
might, for example, be a desired fall in blood prge when an anti-
hypertensive is to be compared with a placebo.&aldteal input into
the calculation differs depending on the sort afdgt you are
carrying out. You may perhaps be required to ifpath a desired
successful effec{m) and what will be regarded as no effect (tié
hypothesis valug 11). The smaller the effect size the larger the
required sample.

2) Next you decide on how certain you want to b@ioking up the
true effect. In other words, you decide on thHeower.
Conventionally we usually want a power of 80 to®®0Remember
that the higher the power the larger the sampleish@quired.

3) Choose your significance level, takpha value. Usually we will
choose 0.05. The smaller the alpha value, the daitge required
sample.

4) Studies that are assessing the difference batsaemple means
require a prediction ofvariance within samples. This can be
‘guesstimatedfrom pilot studies or literature searches. Thedar
the variance, the larger the required sample

Remember thaten if a drug has the desired/predicted effect
study will not necessarily reproduce thatact effectBecause of
random variation, there is a range of possibleltesentred around
the true value. There will also be a spread of iptssoutcomes
around what you regard as the null hypothesis valle two
distributions of positive and negative possibifitiare likely to
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overlap. The only portion of the distribution of pbssible positive
results that can be regarded as significantly difie from the
distribution of negative results, is that which deyond the 5%
percentage point of the negative distribution.déiywant a power of
80%, this proportion must be at least 80% of thealtpossible
positive results.

As we know, as the sample sizes get bigger, thisirildutions
become narrower and narrower as the majority ofili®sluster
around the true values (ie the mean). There wilist be less and
less overlap between the chosen negative and ymsitalue
distributions as sample sizes get bigger.

In the practical setting this means that if youadwa large sample,
and the drug has the effect you desire, the stesiyirris likely to be
near to the true result and less likely to fall hivit the ‘non
significant’ range

Distributions of all possible
random variations on ‘no’
effect and ‘effect’ with
sample sizes of 20 patier

 ~

Only the shaded portion (60%)

of the distribution of ‘effect’

distribution is significantly
Effect different from that of ‘no effect’

/

—

The 5% percentage points

Distributions of all
possible random
variations on ‘no’ effect
and ‘effect’ with sample
sizes of 100 patients.

g

1

Increasing the sample size
results in relatively more
cluster around the mean. the
greater proportion of the
‘effect’ distribution can now be
shown to be significantly
different from the ‘no effect’
distribution. here, 95% of
possible results would be
significantly different form the
distribution around ‘no effect’

The 5% percentage points/

Figure 15. Illustration of how ‘no effect’ and ‘efft’ distributions separate as sample
size becomes larger. This increases the probabilishowing that an effect is
significantly different from * no effect’.

Sample size calculation

Approaches:
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1.) Formulae There are complex formulae for estimating the ieglisample size.
Different formulae are required for different studgsigns. These
can be obtained from text books but mostly we syjnuske computer
software. The basic input to each formula is similaconcept:

Comparing Proportions: Significance leve) (
Desired power (90 %) (actual input is 1-powerh@ 3 error)
11 = proportion of interest ( 0.7 here)
1, = null hypothesis proportion (0.5)

Comparing the means of two samples: Significaneel Ier)
Desired power (actual input is 1-power or fherror)
Proposed difference between the medy)s (
Standard deviations of the samples

2) Lehr’s quick formulae For unpaired t-test or Chi-squared test there gsliak formula for
calculating the sample size for a power of 80% andilpha value
of 0.05. It requires the calculation of tis#andardized difference
which is the effect size divided by the standardateon.

16
(standardieddifferencg’

Samplesize=
(For a power of 90% the numerator is 20)

3) Altman’s hormogram This normogram can be obtained from texts. A lisedrawn
between a column of Standardized differences armblamn of
Powers. This line will intersect a third columnsa#mple sizes (N).
The sample size can be read off at two differgphhalalues. For an
Unpaired t-test you use N/2 for each sample.

Further points regarding sample size calculation

Adjustment for losses/non-compliance In most studies there will be losses for varioussoms such as loss
to follow-up and non-compliance.

Losses Inflate sample size by: 1/ (1-predictedltioiss rate)
Non compliance Inflate by 1/(1-predicted total mmmpliance raté)
Precision based calculation The above sample size calculations are aimed atepdased

hypothesis tests. Precision based sample sizelatidns are used
when you want to estimating a variable to withiceatain level of

precision. Thus, instead of factoring in Power gtipulate a certain
Cl for the estimate. The narrower the Cl, the grettte sample size
required

Sequential trial design

This allows a clinical trial to be carried out $@t, as soon as a significant result is obtaines study can be
stopped, thus minimising the sample size, costranibidity.

As each patient is tested, their results are plattea graph. The upper and lower borders of thplgare drawn
depending on the number of patients tested, theepawd the desired significance level. If A is eethan B,
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the line moves one up and one to the right anB, i better than A, the line moves one down and tonie
right. When the line crosses an upper or lower &grd significant difference has been attained thrdstudy

stopped. If the line crosses the right hand botldere is no difference between the groups andttigy ss also
stopped. (Figure 16)

Line has crossed border. Group A
treatment significantly different

30 from B. - P <0.05
< 20
Q.
>
o 10
o ,
0 If line crosses these borders, no
significant difference has been
~ 10 20 30 40 found in the study with 40
o3 10 patients. P > 0.(
5
o 20
30

Figure 16. Sequential trial design
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ERRORS IN RESEARCH

Random error

Definition Error introduced by a lack of precisiam conducting the study.
Reduced by meticulous technique and by studyirgelaumbers.

Bias

Definition The introduction of a systematic errdlot reduced by increasing
sample size Experimental biasspecifically is a bias towards a
result expected by the human experimenter.

The list of potential areas for experimental bmiuge. Sackett in
Journal of Chronic Disease 1979 produced a compsie list.
The basic classification and some examples aesdlisélow.

1. Reading up on the field Only reading articlest #igree with experimenters view
Only reading articles with positive results
Only reading hot, topical articles

2. Specifying and selecting sample Inadequate sabipk
Volunteer bias — volunteers respond differentlpadients
Confounders not accounted for
Randomisation inadequate

3. Executing the experiment Withdrawal bias — witlvaals not accounted for
Compliance bias
Contamination bias
Influencing experiment through personality
Inadequate or bogus control

4. Measuring outcomes Insensitive measure bias
Expectation bias — pushing result towards expextati
Recall bias
Instrument bias
End digit preference — rounding measurements uglesdy

5. Analysing the data Post hoc significance- assgroause and effect
Data dredging / torture
Over simplifying
Repeated peeks bias — should not make judgemetils pue-
determined sample numbers achieved
Using wrong test — (see below)

6. Interpreting analysis Correlation / cause afecebias
Magnitude bias — suggesting the effect is biggantihis
Significance bias - suggesting significance gretan it is

See chapter on Study Design for compressed alieenagrsion

COMMON BIAS

PROBLEM EXPLANATION PREVENTION
Selection bias One group has different risk thanatdner Randomization, Cross over
Detection bias Observations in one group not soagtdiligently as in Blinding

the other.
Observer bias The observer is able to be subjeabeait the outcome  Observer  blinding,  outcgme
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Recall bias

Response bias

measure design
The patients’ ‘treatment group’ alla@atinfluences the Patient blinding
way they report past history and symptoms. Eg é& th
patient knows they are in the placebo group they ma
exaggerate their ‘untreated’ symptoms

Patients who enrol in a trial mayremtesent those ofRandom selection from populatign
the population as a whole. e.g the obese patiehts w
enrol in a weight loss medication trial may be more
motivated than those in the general population.

Regression  to Random effects may cause a rare, extreme variationControl group
the mean a measurement. If the measurement is repeated, the
likelihood is that the measurement will be lesgaxke.
Thus, if a treatment had been given after the first
measurement, it would erroneously appear, on tkesba
of the second measurement, that it had had anteffec
Hawthorne The actual process of studying and following u@ontrol group; mask intention gf
effect patients influences the outcome. eg chronic hdadastudy from patient
may improve in patients who are being studied and
regularly followed up.
Sample size too small This introduces a form of bias in that a false tiggaresult is more

Confounding

Definition

Example

likely. Type Il error increased.

A form of bias that occurs when the deyraphics of the groups
studied are different and those demographics inflaghe outcome.

In a study that aims to compare the in@deof urinary retention
between PCEA and PCA, the mean age should be the saboth
groups as the elderly have a higher incidence wt®n than the
young. As well as age, other common confounderkidec gender,
BMI, coexisting medical conditions.

Prevention of confounding problems:

Design stage

Analysis stage

Large samples
Randomization
Stratum matching eg several studies with diffeeeyg groups
Matched design (see appendix)

Subdivide into different age groapd analyse each separately.
Mantel-Haenszel test
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Errors at analysis stage

ERROR COMMENT
Parametric tests used instead of non-parametric s dror may occur if:
- the population is not normally distributed
- the sample is too small to be sure of
population distribution
- ordinal data are treated as interval data

Non-parametric test used instead of parametric rietréc tests are more ‘powerful’ and should
used when appropriate

Multiple inter-group t-test comparisons instead dfcreases the chance of type | error
ANOVA

Paired data treated as unpaired Increases the chance of type Il error
One tailed test used instead of two tailed test Increases chance of type | error
Chi- square used when numbers too small - Yategciion should be used in 2 X 2 tables

- Fisher's exact test should be used if expectddeV,
for two or more cellsis <5

Errors at presentation and publication stage

ts’

be

[}

impression of a trend in a sample
Failure to give explicit details of study designdan
statistical analysis

Publication bias Negative studies less likely to be submitted arat
studies should be submitted and (ideally) publishied

meta-analysis, absent negative study should behsq
for by way of funnel plot analysis.
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ERROR COMMENT
Failure to report data points or SD or SEM Unprocessed raw data is helpful in interpretation
Reporting mean with SEM rather than SD SEM is allemanore processed number. Gives false

published than positive ones All well conducted
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SYSTEMATIC REVIEWS AND META-ANALYSIS

Systematic review

Meta-analysis

A systematic review is a hightyuctured process in which an
attempt is made to answer a specific clinical aasby collating
and analysing the data from adllevant trials. The key elements of a
systematic review are outlined in the table below.

Thenathematicaprocess by which the data from several trials are
combined to give a single pooled estimate of effgsually part of
a systematic review.

(FCQ)

Sources for the search

Outcome measures

Validation

Assessment of heterogeneity
Meta-analysis
Reliability of pooled result

Sensitivity Analysis

Conclusions and discussion

Focussed clinical question A systematic review addresses a specific clinicalstjon

Inclusion and exclusion criteria

The studies are selected using clearly defined gteechined inclusior]
and exclusion criteria. Importantly, studies muslyde included which
address the specific FCQ. Other considerationsindlude the type o
trial, language, outcome measures, methodology etc

The sources for the search are decided beforehaddase clearly|
documented. Sources are likely to include all anlifatabases, a hand
search of anaesthesia journals, reference lists joarnals, citations, anfl
personal consultations with experts.
Trials addressing the same FCQ may have slighati@nis in outcomd
measures. The protocol for the systematic revieustndefine the
specific outcome measures to be used.

The fact that the studies have been published doesecessarily me
that they have been adequately validated. Onceiestudave beearr;1
identified they must be properly validated befamelusion in the metat
analysis. Validation will often be carried indepently out by two
individuals, one preferably without expertise ire ttopic under review|
They assess adequacy of treatment allocation ctmerfy blinding,
consistency of trial management, patient withdravairing the trial etc
See below

See below

The pooled result becomes more credible when ftiseaebig difference
in treatment effect, a statistically significantffdience in treatment
effect, consistency across the studies, indireadesce to support th
difference, biological plausibility.

Once a pooled effect measure has been reachedattis re working the
analysis by, for example, using an alternative ewatical model or by
excluding outliers or by excluding trials of argplequality. If you find
that fiddling with the criteria in this way makesry little difference to
the conclusions, the findings are relativelgbust. If the findings
disappear, the conclusions should be expressed caat®usly

1%

Heterogeneity

What is heterogeneity?

Types of heterogeneity

Heterogeneity is diversityoag study results greater than you
would expect by chance alone.

Clinical heterogeneity is where there are significant déffiees in
patient demographics between the studies

Methodological heterogeneity is where there are significant
differences in the conduction and methods betweals t
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Assessing heterogeneity

i) Chi-square test for heterogeneity

ii) 1

Strategies for heterogeneity

Meta-analysis

Fixed effects model

Random effects model

Pooled treatment effect

Statisticalheterogeneity is usually a consequence of the ebwo
and is a significant difference between the resoftdhe studies.
When the term ‘heterogeneity’ is used alone it lguefers to
statistical heterogeneity.

A utopian view of metaymislis that it can combine results from
several identically conducted small studies andhre@amore reliable
conclusion on the large pool of data. In this ids#@bation, the
selected study results will not differ much froncleather because
they should all be conducted on the same typesidngs and with
the same methodology. Any difference in resultd bé small and
due to chance.

What, then, if the results of the selected studifer rather more
from each other? The reviewer must decide whetiedifferences
between study results are so big that chance eantunt for it all.
The latter would imply that there may be differencia trial

methodology which have resulted in truly differeffiects, in which
case trying to combine them to get a single pooddgct is

inappropriate. There are two tests to help makeobjective

decision:

The more §iicamit the test result, the less likely it is thithe
differences between trials are due to chance aldnéke much of
medical statistics, an alpha value of 0.1 is emgpdolyere. Thus, B
value less than 0.1 is an indication that hetereigns significant
and that perhaps the trials are not combinablea Agle of thumb,
the Chi-square should not be more than the degoédseeedom
(number of trials — 1). If it is, heterogeneitypibably significant.
I? is the percentage of variation across the trialst is due to
heterogeneity rather than chance aloné.leds than 25% is low
heterogeneity, > 50% significant and > 75% is high.

Ignore
Check data
Do not undertake a meta-analysis
Explore and report the cause
Random effects meta-analysis
Change effects measure
Exclude outlier studies

A meta-analysis technique that takes the stamdpbat there is a
single treatment effect or one true answer. Anyatimn between
studies is solely due to random variation on tha true answer.
The final estimate is, therefore, the best estinmditéhe proposed
single treatment effect.

Takes the standpoint that there are a varietyiroflas treatment
effects. The final result is therefore the averafjseveral treatment
effects.

The pooled treatment effeatalculated as a weighted average,

with larger studies’ results carrying more weightthe calculation.
The final pooled effect is commonly presented a®©&nor RR.
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The Forest plot

A graphical display of the results of a meta-arialys

The following example is taken from a systematidee that examinetlypotension during spinal surgery for
caesarean section

Review: Techniques for preventing hypotension durg spinal surgery for caesarean section
Comparison: Colloid versus crystalloid
Outcome: Patients requiring intervention for hypesion
Study Colloid Crystalloid RR (Fixed) Weight RR (fixed)

. 95% CI (%) 95% CI

|
Karinen 1995 5/13 8/13 ] 19.5 0.63 (0.28, 1.41)

|
Lin 1999 8/30  16/30 —.— 39.0 0.50 (0.25, 0.99)
Riley 1995 9/20 17/20 _-I_ 41.5 0.53 (0.32, 0.89)

|

|
Total (95% CI) 22/63  41/63 i 100.0 0.54 (0.373).

|
Test for heterogeneity chi-square = 0.18, p =0.91 :
Test for overall effect = 3.25, p = 0.001 I

|

I

0.1 0.2 1 5 10
Favours treatment Favours control
NB. Diagram has been drawn schematically. Abscdatde
and point position not exact.

Figure 17: Forest plot

Note the following points

i) The comparison and outcome measure are statdtk dbp left corner. There may be several metdysea
looking at different comparisons in each systematigew.

i) Individual studies are plotted as boxes onwubdical axis. Size of box represents weightingach study.

iii) Weighting predominantly by sample size. Comdite interval of study is plotted.

iv) Effect measure (commonly the OR or RR) is @dtbn a log scale on the horizontal axis. Thisnadhat
increases and decreases in risk of the same megriave the same visual separation on the horizecaée.

v) Vertical reference line drawn at position oftneatment effect. (OR or RR =1)

vi) Pooled OR or RR displayed as a diamond andesiames, a vertical dashed line. Width of the diach@the
confidence interval of the pooled effect.

vii) A P value is given for the strength of the overalkeff

viii) The result of the test of heterogeneity issmlayed with aP value. If P < 0.1, there is significant
heterogeneity.

ix) 12 statistic may also be displayed.

X) The mathematical model (fixed or random)is daged
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Number of patients in study

Funnel plot

An adjunct to meta-analysis to aid the detectiorbiaf. The funnel plot is a scatter plot of treatmeffect

against a measure of study size, the latter gdpdraing represented by sample size. Normally owneldy
expect larger studies to cluster near the truecefiad smaller studies to have more scatter. larotlords, the
precision in estimating the true effect increasetha study size increases. The scatter of snsiliies should,
therefore, be symmetrical about the ‘true effeettduse the scatter should be solely due to randdepéndent
factors.

If there is asymmetry (a ‘hole’) there may be biaatticularly selection bias. The commonest cadstis is

publication bias where small ‘negative’ studies éndailed to be published. Other causes for an astnical

funnel plot include poor methodology of small seglitrue heterogeneity and fraud.

Note Increasingly, the SE is plotted on the y axigénd of the sample size. This is because imprecisiay

arise even in large studies, if the effect sizenisl.

Missing studies?

Effect Effect

Figure 18: The Funnel Plot
Random variation will cause a spread of study tssarbund the ‘true’ result. The larger the stutlg, closer it's

result will be to the ‘true’ result. A plot of nalés of all the studies against their size shothérefore, give a
funnel shapéa) Large holes in the funnel suggest there has beblicption bias. (b)
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EVIDENCE BASED MEDICINE

Basic points

Definition The conscientious use of mathematicéinestes derived from
high quality research to make decisions about tmcal
management of individual patients.

Key components of EBM Ask an answerable question

Track down best evidence

Appraise / validate evidence critically
Implement results in clinical practice
Evaluate performance

Thus, EBM requires you not only to read paperstbutead the right papers at the right time and tredter
your behaviour.

Advantages Poor quality evidence may lead to mdtgbidnortality
Traditional reviews prone to bias - systematic psscmore
reliable

RCT'’s reduce bias and weighted heavily in EBM
Mass of literature too much to read - EBM providensaries

Criticisms of EBM

Criticism Defence

Generalisations about populations not necessaiilp one is advocating cookbook medicine
appropriate for individual patient

Co-morbidity in RCT’'s may be less than those| &s above. Best evidence always useful but clinigian
clinicians’ patients must realise that it is not necessarily applicable
each individual patient.

Variability in RCT smaller than population so effec
stands out. Over-estimation of intervention effect?

Surrogate end points often used

Expertise and clinical experience being devalued ciffens on the application of EBM to the
individual patient requires expertise and clini¢al
experience

EBM has always been carried out Reading papersihasEBM has not

Hierarchies of evidence

The hierarchy must not be regarded as all-powefflle results of a well conducted trial in an inderi
hierarchical category, will be more valid than tha$ a poorly conducted one in a superior category.

There are severakersions of the hierarchies including those of W&vEntive Services Task Force, the NHMRC
(Australia) and The Oxford Centre for EBM. Thedatis the most comprehensive. Two are given below.
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NHMRC (Aus) Levels of evidence (abridged)

Systematic review

Properly designed RCT

-1 Pseudo — RCT
-2 Non-randomised cohort with concurrent gohtcase-controlled study
-3 Comparative study with historical control;

Case series

Systemic reviews and meta-
analysis

/ Other control trials \
/ Cohort studies \
/ Case-controlled studies \

/ Cross-sectional surveys \

! Case reports >

Traditional hierarchy of evidence: Based on Trigie€hhalgh: How to read
a paper. Blackwell Publishing.

The following hierarchy has a different functiorirgea categorization of Risk vs benefit. This omeduced by
the US preventative service task force.

U.S. Preventive service task force Categories afmamendation |

Level A
Level B
Level C

Level D
Level |

Good scientific evidence that benefits sabsally outweigh risks

At least fair scientific evidence that bétsesubstantially outweigh risks

At least fair scientific evidence that bfitseexist but balance benefit / risk balance too
close to make general recommendations

At least fair scientific evidence that ssutweigh benefit

Scientific evidence is lacking, poor quglitr conflicting
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STUDY DESIGN

1. Specify research objective Occurrence of disease
Hypothesis testing
Understand disease causation
Evaluate intervention

2.Specify target population Inclusion / Exclusion criteria

3. Specify outcomes Primary — should directly answer the research dijec
Preferablynot be a surrogate outcome
Secondary — few as possible to avoid experimenewigipe 1
error and temptation for ‘data torture’.

4. Requirement for control group if intervention study

5. Sample size estimation Influences power and precision
May require a pilot study. Pilot study should besatgtive with
confidence intervals but not a hypothesis test.

6. Confounding Confounding variable is one which is associatedh witoth
outcome and main risk factor independently. Coritrdvo ways:
Design — Observational study by matching, Randomisation in
intervention trials
Analysis — Stratification

7. Prevent bias (abbreviated) Selection biasRandomisation.
Observer biasAllocation concealment and blinding
Response biasif patient or observer or analyst knows allocation
they can affect outcome. Avoid with blinding andoehtion
concealment
Recall bias:Likelihood of side effects/ disease recall by patie
will be influenced by knowledge of their treatmembup. Avoid
with blinding and allocation concealment.
Withdrawals Tends to underestimate treatment effect / side-
effects. Use Intention to treat analysis and asgabllrandomised

patients

8. Data handling Responsibility, confidentiality, double data entlgtabase

9. Statistical analysis plan Outline the statistical analysis strategy in peolo Avoid data
dredging
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Phase |

Phase I

Phase Il

Phase IV

CLINICAL DRUG TRIALS

Administration to (usually) healthy humafuateers to determine the
pharmacokinetics and toxicology of the drug.

Specific clinical trials to determine phacodynamics, efficacy and
safety.

Large clinical studies to determine duotefits, risks etc

Continued surveillance once drug is inketad
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APPENDIX

KEY POINTS IN STATISTICS

TOPIC

KEY POINTS

The normal distribution

1) A population in whichete is a trend, a ‘normal’ valu
and in whichrandom(chance) variation has caused a spr|
around that trend.

2) The spread is such that most values still ctustend the
norm. Extreme variations exist but are rare. Thedom
effect works equally above and below the norm.

3) The shape of the plot is, therefore, bell shaped

symmetrical and theoretically of infinite size
4) Because the spread has occurred through chaimee
distribution is symmetrical and the mean = modeedian.
5) A large sample taken from a normally distribu
population also has a normal distribution.

6) The larger the sample, the more likely it's meeh be
close to the population mean

7) If multiple samples are taken from a normallgtdbuted
population, the plot of their means will also bermally
distributed.

h
’

ed

Standard deviation

A measure of the spread oifvishaal values around th
mean of a population or a sample.

1%

Use of standard deviation

1The SD gives an indication of the spread of val
within a sample and, therefore, the reliability thie
sample mean as an indication of a trend in a sample
2. The SD of a large sample is similar to that of
population. This fact is used in parametric tests.
3. Used to calculate the SEM

its

Standard error of the mean

An estimate of how tkarma of multiple samples would
spread around the population mean.

e

Use of standard error

1. Derived from the SD, tB®Salso gives an indication d
the spread of values within a sample but it is noan@monly
regarded as an indication of the proximity of tlemple
mean to its population mean.

2. Used in parametric tests comparing sample means.

The standard normal distribution

The basic temptditdhe normal distribution where data &
described in multiples of SD’s or SEM’s from thepptation
mean.

Parametric testing

Tests based on thearametersof the normal distribution
The tests determine the probability of an effeéhdpelue to
chance alone.

z-value

An expression in multiples of SD’s or SEM’'s, ofet
distance between a point and the population meaed lh
the normal (z) test.

Null hypothesis

An hypothesis to be tested that states that arferdiice

found has occurred through chance alone.
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P value Calculated from the results. TRevalue is the probability of
an effect having occurred through chance alon&df Null
Hypothesis is true.

Alpha The significance level. Decided at the design stégis the

limit at which P will be regarded as being too large for
statistical significance.

Alpha (Type 1) error

Chance of there being no déffee when you say there |is
one. False positive rate.

Beta (Type IlI) error

Chance of there being a défee when you say there |[is
none. False negative rate.

95% Confidence interval (parametric test)

The eanbove and below the sample mean within which
you predict with 95% confidence that the true value
(population mean) lies.

Confidence interval (general equation)

Cl = estioratt a multiple of SE where multiple depends
on assumed distribution and level of confidencés @ked
when reporting OR’s, RR’s and many other statistics

T-test

A parametric test of means where the samples arsrtall
to use the normal test.

One sample t-test

T-test where the mean of a sample is compared with
number

Two-sample t-test

T-test where two means are compared.

Paired t-test

T-test comparing the results of a single sani@ére and
after treatment.

One-—tailed When there is only one direction that one group eary
from another, you only have to look in one tail far
significant result.

Two-tailed If you don't knowfor certain which way the test result will

vary compared with another value, you must lookbath
tails

Bonferroni's correction factor

Correction factoredsto reduce alpha error when multiplg t-
test comparisons are used.

Analysis of variance

A method used to compare ehor more parametric
samples. The between groups variance must outwibigi
within groups variance.

Non-parametric testing

Any test which is not parametric! Based on rankimgen
data is continuous

Regression The drawing of the line that best describes thatieaiship
between two continuous variables.
Equation: y = a + bx

Correlation The determination of the likelihood that the abgve

relationship does exist.

The power of a study

The probability of a studynigeiable to demonstrate |a
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difference when a difference does exist.
1-false negative rate.

Information required when calculating sample size
a) Comparing the numbers in two samples

Alpha

1-Power (13)

The predicted effect-size.

Predicted standard deviations of samples

Information required when calculating sample size
b) Comparing a proportions

Alpha

1-Power (13)

The proportion you're looking for
Null hypothesis proportion

Chi square

Compares the frequency of a binary event within dwenore
groups

Uses a contingency table

Compares observed with expected values

Relative risk

The ratio of the incidences of an event with andheut
exposure

Odds ratio

The ratio of the odds of an event with and withexposure

Number needed to treat

The number of patients nktxlbe treated to produce o
success or survivor

Sensitivity The proportion ofdiseasewhich is correctly identified
Highly sensitive test has very few false negatives
Specificity The proportion ofno-disease’'which is correctly identified

Few false positives.

Positive predictive value

The proportion of a tespositive resuls which true
positives.

Negative predictive value

The proportion of a tegtegativeresults which are true
negatives.

Bland-Altman plot

A plot used to assess agreement between two megs
techniques

uri

Receiver operating characteristic (ROC) curve

Appraised to illustrate the trade off between seuitsiti
and specificity in tests that produce results onueerical
scale rather than as an absolute positive or negati

Systematic review

A highly structured process in which an attempiade to
answer a specific clinical question by collatingl amalysing
the data from altelevant trials.

Meta-analysis

The mathematical process of combining data frondist
using similar treatments in a systematic manner.
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GLOSSARY

a intercept of y axis

AR attributable risk

a significance level

ANOVA analysis of variance

b regression coefficient

C.i. confidence interval

d.f. degrees of freedom

df degrees of freedom

E expected frequency

F statistic of analysis of variance
H statistic of Kruskal-Wallis test
Ho null hypothesis

MS mean square

Il population mean

NNT Need to treat

N population size

NPV negative predictive value

n sample size

@) observed frequency

OR odds ratio

P probability

p proportion of outcomes in a sample
PPV positive predictive value

T population proportion

LS null hypothesis proportion

q statistic of the Student-Newman-Keuls test
o} statistic of Dunnett's test

r Pearson's correlation coefficient
rs Spearman's rank correlation
r2 coefficient of determination
rxc rows x columns table
RR relative risk
o population standard deviation
02 population variance
S sample standard deviation
S standard error of the regression
s.d. SD standard deviation
L sample variance
SS sum of squares
s.e., SE, SEM standard error of the mean
SND standard normal deviate
t statistic of the test
U statistic of the Mann-Whitney test
X individual value; explanatory value in linear reggi®n
X individual value
X sample mean
y dependant value in linear regression
Vi individual / actual value in linear regression
)7 predicted value in linear regression
y mean value of y in linear regression
z standard normal deviate
|

factorial of a number (all integers from number dowo 1
multiplied together)
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Additive rule, 34

alpha error, 17

Alpha error, 17

Alpha value, 16

Altman’s normogram46
ANOVA, 25, 50
Arithmetic mean, 6
Attributable risk, 65

Beta error, 17

bias, 33

Bias, 48

Binomial distribution, 13
Binomial formula, 14
Bland and Altman plot, 32
Bonferroni's correction, 26
Box and whisker plof7
Case-control studies37
Categorical, 5

Chi- square, 50

Clinical trials, 58

Cohort studies, 37
confidence interval, 23
Confounding, 49
contingency table, 35
Correlation, 30

Data transformations:, 13
Degrees of freedom, 8
descriptive statistics, 6
Detection bias 48
dichotomous5

Discrete numerical dat&
Dunnett’s test, 26
empirical frequency distribution, 9
Expected frequencies, 35
False negative, 17

False positive, 17
Fisher's exact test, 50
Fixed effects modeb2
Forest plot, 53
Friedman's test, 27
Geometric mean, 6
goodness of fit, 29
Hawthorne effect, 49
heterogeneity, 51
Incidence rates, 65
Interquartile range, 7
Interval datg 5

Lehr's quick formulag46
limits of agreement, 33
Mann - Whitney U Test, 27
Mantel-Haenszel, 39, 49
Matched design, 39, 49
Median, 6

Mode, 6

Multiple regression, 31
Multiplicative rule , 34
Negative predictive value, 41
Neuman-Keuls, 26
Nominal data5

INDEX

Non-parametric data, 5
Normal Plot, 10

Normal test, 18

Number needed to treat, 38
Numerical, 5

observed frequencies, 35
Observer bias 48

One tailed test 50

Ordinal data 5

P value, 16

Paired data, 50

Parametri¢ 5

Parametric tests, 18, 50
percentage points, 11
Percentiles, 7

Poisson distribution, 15
Population attributable risk, 66
Positive predictive value, 40
Post hodests, 26

precision 8

Precision, 10

precision., 33

Prevalence, 67

Proportional attributable risk, 65
proportions, 13
Proportions, 34

Random effects modeb2
Range, 7

Ratio data, 5

Recall bias 49

Regression, 28

Regression to the mea9
Risk, 37

Scheffé, 26

Selection bias 48
Sensitivity, 40

Spearman's rank correlation, 30
Specificity, 40

Standardised difference, 8
Stratum matching, 39, 49
systematic error, 48
t-distribution, 13

The Funnel Plot, 54

t-test, 21

Tukey's Honestly Significantly Difference (HSD), 26
two tailed, 50

two tailed tests, 19

Type 1 error, 17

Type 1 Error, 17

type | error, 50

type Il error, 50

Type Il Error, 17

variance, 7

Wilcoxon paired-sample test 27
Wilcoxon rank sum test 27
Yates correction, 50

z test, 18
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APPENDIX

Formulae
The binomial equation Prot(rA' S) =TT (1— IT)n_r
ri(n-r)
n = sample size
T = population proportion
r = number of the outcome of interest
A = the outcome
,Ur
Poisson formula P(r) == e’
r
Pn = probability ofr occurrences
Y7 = mean number of occurrences per unit time

2
Calculation of SE in a two sample normal test ~ SE (largesample$= ’Sl— +
n

Calculation of SE in a two sample normal test

SE (populations known) =

Calculation of the SE in a two sampitest

Spearman’s rank correlation equation r,=1- >
n‘n —li
Risk scores
Incidence rates Relative risk given per year eggdos

= incidenceper year exposedricidenceper year non-exposed

Attributable risk Indicator of magnitudenf excess risk in absolute termeg how
many_extracases of cancer per year were due to smoking?
= incidence among exposed - incidence among rposed
= ala+b - c/c+d perunit population

Proportional attributable risk: The proportion of disease among the exposed wisicdtaiused by
the exposure (after the proportion which occursheiit exposure
has been taken into accouneg of all the cases of lung cancer
among smokers, what proportion can be attributesnimking ?
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Population attributable risk

Matched study design

An example of a matched study

=AR /incidence among exposed = RR -1/ RR

If the prevalence of the disease in the populat®now, an
exposure with a high relative risk may not actualpuse many
deaths. The PAR takes this into consideration Hgtirg the
overall incidence with the incidence among non-eegb

= overall incidence - incidence among non-exposed

Is DVT associatedh wital contraceptive use? A retrospective
case-control study is carried out. Patients whceehHaad DVT are
found and matched with patients of with the samefmmders
but without DVT. Their exposure to the oral conaptive pill is
then determined.

Cases Controls Cases Controls
DVT No DVT DVT No DVT
1 1 has same age, ASA, BMl as 11 11 1 and 11 were both on OC pill
2 2 has same age, ASA, BMl as 12 12 2 12
3 3 has same age, ASA, BMI as 13 13 3 13
4 4 has same age, ASA, BMl as 14 14 4 and 14 were both not on OC pill
5 Etc 15 5 15
6 Etc 16 6 16
7 Etc 17 7 17
8 Etc 18 8 and 18 were both on OC pill
9 Etc 19 9 19
10 Etc 20 10 20

10 cases of DVT are found retrospectively and
each is matched with a patient with the same

confounders but with no DVT.

on OC or both not on OC

Cases Controls
DVT _| No DVT An odds ratio is then calculated to assess likeliho
5 1 and 11 were both on OC pill = of risk associated with OC and DVT.
3 (13) _ , .
4 and 14 were both not on OC pill OR = ratio of discordant pairs =
(5) 15
6 (16) number pairs where there is DVT + OC
0] _ 17 number pairs where there is no DVT + OC
8 and 18 were both on OC pill
9) 19 3
(10) 20 =572

Pick out the cases and the controls who had

the OC pill. ()

used
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Regression to the mean

200 200
) (@]
(@]
SBP SBP
) (@)
100 100
(@]
(©]
Day 1 Two weeks later Day 1 Two weeks later
An isolated recording on day 1 reveals an extremely If 50 recordings had been taken on day 1, therddvou
high SBP. After two weeks of treatment there appear be a normal distribution of results based on random
to be a dramatic improvement. But is this seconttary variation. His SBP has, in fact, not changed. pesgys
the treatment? to have fallen because extreme variations areylikel

regress towards the mean

Arithmetical demonstration of the effect of prevale on predictive ability of a test:

A test of known sensitivity and specificity is ustedpredict an outcome in Population A. If it ieh
used in population B where the prevalence of theame is lower, prediction of a positive outcome

becomes more difficult but prediction of a negatoutcome is easier ie the PPV of the test becpmes
weaker and the NPV improves.

€g

Example 1. Prevalence of diseas&l=% (100 /991)

yes no
+ve 29 80 109 Sensitivity = 29 /100 = 29 % I¢Eanegative rate = 71 %)
-ve 71 811 882 Specificity = 811 / 891 = 91 %lge positives = 9 %)

Totals 100 891 991 PPV test=29 / 109 =28 %, NPV test=811 /882 =92 %

Example 2. Prevalence of diseas#¢.8 % (48 /991)

yes nho
+ve 14 87t 101 Sensitivity = 14 / 48 = 29 % (False negatate = 71 %)
-ve 34 8561 890 Specificity = 856 / 943 = 91 % (False positiv 9 %)

Totals 48 943 991 PPV test= 14/ 101 =14 %, NPV test=856 / 890 =96%

(Based on an article by Myles PS, Williams NJ, Plbwe Predicting outcome in anaesthegi
understanding statistical methods. Anesthesia ateh$ive Care. 1994; 22:447-53.)

8
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Corrections

Introduction

Distribution of Sample means plot
Figure numbering
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