2020A13 Describe the time course between an intravenous injection of a general
anaesthetic agent to loss of consciousness. Explain the delay using pharmacokinetic principles.

 

 

List:

·     Intro

·     Kinetics/dynamics

·     Dynamics

·     Special populations

 

Intro:

IV induction agent

·      Induces LOC in one arm-brain circulation time (30sec in adult)

o   Propofol: 1-2mg/kg

o   Thiopentone: 3-7mg/kg

o   Ketamine: 1-2mg/kg

o   Etomidate: 0.3mg/kg

o   Midazolam: 0.3mg/kg

Problems

·      Three compartment model poorly describes induction kinetics

·      Variable relationship between dose and concentration (= kinetics)

·      Variable relationship between concentration and effect (= dynamics)

Implications

·      Risk of overdose -> hypotension

·      Risk of underdose -> risk of awareness

·      Propofol TCI models are inaccurate at induction

 

Pharmacokinetics / pharmacobiophasics:

Time course

·      Kinetics = administration -> plasma concentration (Cp)

o   Three compartment model inaccurate

o   Mostly patient-dependent delay

·      Biophasics = plasma concentration -> effect site concentration (Ce)

o   Represented by t1/2ke0

o   Inferred from lag between Cp and EEG pattern

o   Mostly drug-dependent delay

Determinants

Speed of LOC (magnitude of peak effect) / (time to peak effect)

 

(A) Magnitude of peak effect

·      ↑Dose size

·      ↑Speed of injection (bolus cf. TCI injection)

·      ↓Cardiac output (↑pregnant/neonate/obese, ↓elderly/shock)

·      ↓Central blood volume (↑pregnant/obese/neonate, ↓elderly/shock)

·      ↑Speed and extent of recirculatory second peak (important if bolus is slow)

 

(B) Time to peak effect

·      ↑Rate of delivery to effect site

o  ↑Cardiac output (note bivalent effects)

o  ↓Distance from injection site to brain (e.g. CVC cf. lower limb PIVC)

·      ↑Rate of effect site equilibration (↑ke0 -> ↓t1/2ke0)

o  ↓Thickness (e.g. immature BBB in neonate)

o  ↑Lipid solubility (e.g. thiopentone: t1/2ke0 1 min -> clear endpoint)

o  ↑% Unionized (e.g. propofol >99%: t1/2ke0 2.6 mins)

 

Dynamics:

Time course

·      Dynamics = effect site concentration -> effect

o   Represented by dose response curve

o   Effect on brainstem, thalamus, cerebral cortex

o   Bind receptor -> activate receptor -> ion flux -> ↓membrane potential -> ↓electrical activity -> LOC

o   Minimal delay

Physiology

·      Neonate: immature brain structures and pathways -> ↓Cp50

·      Elderly: ?↓ion channel function, ?↓ synaptic activity

·      Pregnancy: progesterone -> ↓Cp50

·      Obesity: inflammatory cytokines -> ↓Cp50

Pathology

↓Cp50 if:

·      ↓mAP (<40mmHg)

·      ↓pO2 (<40mmHg)

·      ↑pCO2 (>60mmHg sedation, >80mmHg anaesthesia if acute)

·      ↓Temp

·      ↓pH

↑Cp50 if:

·      Anxiety, ↑SNS

·      ↑Temp

Drug interaction

·      Synergistic: e.g. fentanyl 1mcg/kg reduces dose of propofol by 20%

·      Additive: e.g. ↓propofol Cp50 if co-induction with volatile agent

·      Infra-additive: e.g. ketamine + midazolam

·      Antagonistic: e.g. propofol + acute amphetamines

·      Tolerance: chronic barbiturate use -> ↑Cp50

Pharmacogenomics

·      e.g. propofol Cp50 for immobility is 15mcg/mL with std dev 5mcg/mL

·      Polymorphism of receptors, ion channels, ICF signalling

 

Special populations:

 

Changes

Time to peak

Magnitude of peak

Neonate

↑CO +100%

↑%CO to brain

↓Arm-brain distance

Pregnant

↑CO +25%

↓%CO to brain

↑BV 50%

Elderly

↓CO variable

↓BV variable

↑%CO to brain variable

Shocked

↓CO

↓BV

↑%CO to brain

 

 

Feedback welcome at ketaminenightmares@gmail.com