· Effects of hypothermia
· alpha-stat
· pH-stat
Solubility |
· Henry’s law: amount dissolved = partial pressure x solubility coefficient · Solubility coefficient ∝ 1/temperature (T) Ex vivo (assuming stable gas content): · ↓1°C -> ↓PaO2 5mmHg · ↓1°C -> ↓PaCO2 2mmHg In vivo (assuming stable gas partial pressures): · ↓T -> ↑CaO2:PaO2 (minor factor, since most is bound to Hb) · ↓T -> ↑CaCO2:PaCO2 (minor factor, since most is bound to carbamino or as HCO3-) |
Metabolism |
· ↓T -> ↓rate of oxidative phosphorylation -> ↓VO2 (↓MR 7% per -1°C) · ↓T-> ↓rate of Krebs cycle -> ↓VCO2 (-> ↓PaCO2 -> ↑pH) |
pH |
· ↑pH 0.015 per ↓1°C (Rosenthal equation) o ↓Temp -> ↓H2O dissociation o ↓Metabolic rate -> ↓VCO2 ->↓PaCO2 o ↑CO2 solubility -> ↓PaCO2 : CaCO2 |
Hypothesis |
· pH ICF = pN ≈ 6.8 · pKa imidazole groups of ICF proteins ≈ 6.8 · Alpha = ratio unpronated : protonated residues = 0.55 normally · Hypothesis: that ‘α’ is unchanged across the temperature range; i.e. as temperature decreases, pH and pKa of imidazoles should increase at the same rate |
Management |
· Aim: ensure ECF pH will be 7.4, PaCO2 will be 40mmHg once rewarmed · Hence: as ↓T, no change minute ventilation, allow ↑pH, ↓PaCO2 · ABG machine: enter T = 37°C |
Advantages |
·
Ensures trapping of metabolic intermediates in
cytosol · Preserves enzyme and ion channel function · Ensures optimal ICF buffering · Preserves CBF autoregulation, minimises ICP · Minimise microembolisation e.g. stroke · Prevent ischaemic damage |
Hypothesis |
· That ECF pH 7.4 and ICF pH 6.8 are optimal at any temperature |
Management |
· Aim: ensure plasma pH 7.4 across temperature changes · Hence: as ↓T, hypoventilate to ensure the above · ABG machine: enter T = actual °C |
Advantages |
· Luxury cerebral perfusion (↑PaCO2 -> vasodilation) · Systemic vasodilation -> fast and homogenous cooling (↑PaCO2) · Right shift OHDC (↑PaCO2) offsets left shift (↓T, ↑pH) |
Feedback welcome at ketaminenightmares@gmail.com