· Equations
· Graph
· Perfusion limitation
· Diffusion limitation = time limitation
Fick’s law |
|
Diffusion capacity |
· Inverses are additive, since in parallel · L: lung · M: membrane · Θ: rate of reaction of O2 with haemoglobin · Vc: volume in pulmonary capillaries, normally ~70mL |
High rate of transfer |
· High gradient (e.g. 70% N2O = 532mmHg gradient) · Normal area 80m2 · Normal thickness 0.5μm · Normal V/Q matching · High lipid membrane solubility (e.g. CO2:O2 is 30:1) · Low MW (e.g. O2 16g/mol < CO2 44g/mol) |
Low capacity for uptake |
· Low blood solubility (e.g. N2O blood-gas partition coefficient 0.47) · Low protein binding · Low pulmonary capillary blood volume |
Slow transit |
· At rest: 0.75 seconds (slower if heart failure) |
Examples |
· N2O · CO2 · O2: If 1) resting 2) sea level 3) healthy |
Low rate of transfer |
· Low gradient (e.g. 5000m altitude: pO2 only 80mmHg) · Low area o Tissue loss: (e.g. lobectomy, pneumonectomy, smoking -> destruction) o Shunt (e.g. atelectasis) o Dead space (e.g. pulmonary embolus) · High thickness (e.g. interstitial oedema, fibrosis) · Low lipid membrane solubility · High MW |
High capacity for uptake |
· High blood solubility (e.g. isoflurane blood-gas partition coefficient 1.2) · High protein binding (e.g. CO 250x higher affinity for Hb than O2) · High pulmonary capillary blood volume (e.g. LV failure) |
Fast transit |
Peak exercise: 0.25 seconds |
Examples |
· CO: o Solely diffusion-limited o High affinity for Hb ensures P2 near zero o Allows simpler calculation of diffusing capacity · O2: if o Exercise o Altitude o Lung disease (especially if multiple) |
Feedback welcome at ketaminenightmares@gmail.com